Properties

Label 2-12138-1.1-c1-0-4
Degree $2$
Conductor $12138$
Sign $1$
Analytic cond. $96.9224$
Root an. cond. $9.84491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s + 7-s + 8-s + 9-s + 10-s − 5·11-s − 12-s − 2·13-s + 14-s − 15-s + 16-s + 18-s − 2·19-s + 20-s − 21-s − 5·22-s − 4·23-s − 24-s − 4·25-s − 2·26-s − 27-s + 28-s + 9·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 1.50·11-s − 0.288·12-s − 0.554·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s + 0.235·18-s − 0.458·19-s + 0.223·20-s − 0.218·21-s − 1.06·22-s − 0.834·23-s − 0.204·24-s − 4/5·25-s − 0.392·26-s − 0.192·27-s + 0.188·28-s + 1.67·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12138 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(12138\)    =    \(2 \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(96.9224\)
Root analytic conductor: \(9.84491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 12138,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.472577466\)
\(L(\frac12)\) \(\approx\) \(2.472577466\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 9 T + p T^{2} \) 1.79.aj
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.25715437447140, −15.83674274743958, −15.02496962920677, −14.90463387899870, −13.82810310736521, −13.56163818784243, −13.03680687172514, −12.38679703289874, −11.66133977046801, −11.54175103936727, −10.42220818842518, −10.16304350895826, −9.807083288047245, −8.447924161216223, −8.114221239531532, −7.442612523394064, −6.500605477510542, −6.213215803356122, −5.330415167007685, −4.881958770561925, −4.397652356021472, −3.309850981932637, −2.477561026446859, −1.927581902235528, −0.6360052246322109, 0.6360052246322109, 1.927581902235528, 2.477561026446859, 3.309850981932637, 4.397652356021472, 4.881958770561925, 5.330415167007685, 6.213215803356122, 6.500605477510542, 7.442612523394064, 8.114221239531532, 8.447924161216223, 9.807083288047245, 10.16304350895826, 10.42220818842518, 11.54175103936727, 11.66133977046801, 12.38679703289874, 13.03680687172514, 13.56163818784243, 13.82810310736521, 14.90463387899870, 15.02496962920677, 15.83674274743958, 16.25715437447140

Graph of the $Z$-function along the critical line