Properties

Label 2-12138-1.1-c1-0-10
Degree $2$
Conductor $12138$
Sign $1$
Analytic cond. $96.9224$
Root an. cond. $9.84491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 7-s + 8-s + 9-s − 10-s + 3·11-s + 12-s + 14-s − 15-s + 16-s + 18-s − 20-s + 21-s + 3·22-s − 4·23-s + 24-s − 4·25-s + 27-s + 28-s + 3·29-s − 30-s + 5·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.904·11-s + 0.288·12-s + 0.267·14-s − 0.258·15-s + 1/4·16-s + 0.235·18-s − 0.223·20-s + 0.218·21-s + 0.639·22-s − 0.834·23-s + 0.204·24-s − 4/5·25-s + 0.192·27-s + 0.188·28-s + 0.557·29-s − 0.182·30-s + 0.898·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12138 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(12138\)    =    \(2 \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(96.9224\)
Root analytic conductor: \(9.84491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 12138,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.635853335\)
\(L(\frac12)\) \(\approx\) \(4.635853335\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 7 T + p T^{2} \) 1.53.h
59 \( 1 - 7 T + p T^{2} \) 1.59.ah
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 3 T + p T^{2} \) 1.73.d
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.04333952198767, −15.65080786633533, −15.28834779732876, −14.45948269385479, −14.07784704381998, −13.81609743803123, −12.95409391530071, −12.31424325267418, −11.91702036852432, −11.36403243142219, −10.69887883970261, −9.964994268355514, −9.424258389734910, −8.548969424942731, −8.169034724961734, −7.432283187087783, −6.862824571998920, −6.146243106255362, −5.474834873375972, −4.555093843531266, −4.054267218397522, −3.538003807166380, −2.586528445859215, −1.887978272597886, −0.8737067665214155, 0.8737067665214155, 1.887978272597886, 2.586528445859215, 3.538003807166380, 4.054267218397522, 4.555093843531266, 5.474834873375972, 6.146243106255362, 6.862824571998920, 7.432283187087783, 8.169034724961734, 8.548969424942731, 9.424258389734910, 9.964994268355514, 10.69887883970261, 11.36403243142219, 11.91702036852432, 12.31424325267418, 12.95409391530071, 13.81609743803123, 14.07784704381998, 14.45948269385479, 15.28834779732876, 15.65080786633533, 16.04333952198767

Graph of the $Z$-function along the critical line