Properties

Label 2-116160-1.1-c1-0-108
Degree $2$
Conductor $116160$
Sign $1$
Analytic cond. $927.542$
Root an. cond. $30.4555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·7-s + 9-s + 2·13-s − 15-s + 6·17-s − 2·21-s + 25-s + 27-s − 4·29-s + 8·31-s + 2·35-s + 6·37-s + 2·39-s + 6·43-s − 45-s + 8·47-s − 3·49-s + 6·51-s + 14·53-s − 4·59-s + 8·61-s − 2·63-s − 2·65-s + 12·67-s + 12·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s + 0.554·13-s − 0.258·15-s + 1.45·17-s − 0.436·21-s + 1/5·25-s + 0.192·27-s − 0.742·29-s + 1.43·31-s + 0.338·35-s + 0.986·37-s + 0.320·39-s + 0.914·43-s − 0.149·45-s + 1.16·47-s − 3/7·49-s + 0.840·51-s + 1.92·53-s − 0.520·59-s + 1.02·61-s − 0.251·63-s − 0.248·65-s + 1.46·67-s + 1.42·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116160\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(927.542\)
Root analytic conductor: \(30.4555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 116160,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.772955000\)
\(L(\frac12)\) \(\approx\) \(3.772955000\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.68959063982920, −13.09190875513895, −12.52051990655023, −12.42727737901211, −11.53193869249132, −11.37698872534464, −10.51351761963905, −10.15670792507141, −9.680890448916566, −9.200298814733204, −8.681116705445842, −8.081242566871894, −7.754399068900175, −7.220749444237295, −6.607099522207275, −6.109781391855971, −5.548841463432681, −4.959117128787321, −4.141532725938393, −3.745987728221263, −3.307753482430600, −2.632776492574125, −2.120179584504214, −0.9828060217808849, −0.7262672373247210, 0.7262672373247210, 0.9828060217808849, 2.120179584504214, 2.632776492574125, 3.307753482430600, 3.745987728221263, 4.141532725938393, 4.959117128787321, 5.548841463432681, 6.109781391855971, 6.607099522207275, 7.220749444237295, 7.754399068900175, 8.081242566871894, 8.681116705445842, 9.200298814733204, 9.680890448916566, 10.15670792507141, 10.51351761963905, 11.37698872534464, 11.53193869249132, 12.42727737901211, 12.52051990655023, 13.09190875513895, 13.68959063982920

Graph of the $Z$-function along the critical line