Properties

Label 2-11616-1.1-c1-0-12
Degree $2$
Conductor $11616$
Sign $1$
Analytic cond. $92.7542$
Root an. cond. $9.63089$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 4·7-s + 9-s + 2·13-s − 2·15-s − 2·17-s + 4·19-s − 4·21-s − 25-s − 27-s + 6·29-s − 4·31-s + 8·35-s − 2·37-s − 2·39-s + 6·41-s − 4·43-s + 2·45-s + 8·47-s + 9·49-s + 2·51-s − 6·53-s − 4·57-s − 12·59-s + 10·61-s + 4·63-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 1.51·7-s + 1/3·9-s + 0.554·13-s − 0.516·15-s − 0.485·17-s + 0.917·19-s − 0.872·21-s − 1/5·25-s − 0.192·27-s + 1.11·29-s − 0.718·31-s + 1.35·35-s − 0.328·37-s − 0.320·39-s + 0.937·41-s − 0.609·43-s + 0.298·45-s + 1.16·47-s + 9/7·49-s + 0.280·51-s − 0.824·53-s − 0.529·57-s − 1.56·59-s + 1.28·61-s + 0.503·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11616\)    =    \(2^{5} \cdot 3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(92.7542\)
Root analytic conductor: \(9.63089\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11616,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.879979202\)
\(L(\frac12)\) \(\approx\) \(2.879979202\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.52184204048019, −15.78994544082122, −15.43846413693129, −14.50624606125631, −14.19934527767619, −13.62244908899773, −13.10999165973361, −12.31360296003130, −11.67045961527772, −11.34230473006151, −10.49051277856116, −10.37729283042030, −9.233589273000301, −9.017917542192548, −8.003315864282466, −7.648384051021589, −6.751781663071397, −6.089677841694109, −5.507753389428934, −4.919443632076926, −4.359506672648896, −3.378733524570217, −2.263796322482704, −1.643418835165879, −0.8603372790458047, 0.8603372790458047, 1.643418835165879, 2.263796322482704, 3.378733524570217, 4.359506672648896, 4.919443632076926, 5.507753389428934, 6.089677841694109, 6.751781663071397, 7.648384051021589, 8.003315864282466, 9.017917542192548, 9.233589273000301, 10.37729283042030, 10.49051277856116, 11.34230473006151, 11.67045961527772, 12.31360296003130, 13.10999165973361, 13.62244908899773, 14.19934527767619, 14.50624606125631, 15.43846413693129, 15.78994544082122, 16.52184204048019

Graph of the $Z$-function along the critical line