Properties

Label 2-116032-1.1-c1-0-1
Degree $2$
Conductor $116032$
Sign $1$
Analytic cond. $926.520$
Root an. cond. $30.4387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 3·9-s − 3·11-s − 5·13-s − 6·17-s − 4·19-s + 8·23-s + 4·25-s + 8·29-s − 7·31-s + 37-s − 2·41-s − 6·43-s − 9·45-s + 6·47-s − 53-s − 9·55-s + 9·59-s + 6·61-s − 15·65-s − 11·67-s + 15·71-s − 2·73-s + 4·79-s + 9·81-s − 14·83-s − 18·85-s + ⋯
L(s)  = 1  + 1.34·5-s − 9-s − 0.904·11-s − 1.38·13-s − 1.45·17-s − 0.917·19-s + 1.66·23-s + 4/5·25-s + 1.48·29-s − 1.25·31-s + 0.164·37-s − 0.312·41-s − 0.914·43-s − 1.34·45-s + 0.875·47-s − 0.137·53-s − 1.21·55-s + 1.17·59-s + 0.768·61-s − 1.86·65-s − 1.34·67-s + 1.78·71-s − 0.234·73-s + 0.450·79-s + 81-s − 1.53·83-s − 1.95·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116032\)    =    \(2^{6} \cdot 7^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(926.520\)
Root analytic conductor: \(30.4387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 116032,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9198695935\)
\(L(\frac12)\) \(\approx\) \(0.9198695935\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
37 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 7 T + p T^{2} \) 1.31.h
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 5 T + p T^{2} \) 1.89.af
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.41120357429384, −13.25438400172684, −12.78398556421055, −12.23386520519237, −11.64986287192037, −10.97777035850290, −10.71141620613769, −10.24608045283605, −9.626596082317962, −9.246290728627143, −8.654453958023975, −8.409537067236927, −7.618271885796331, −6.867927273108707, −6.717279479920992, −6.027218839241806, −5.373423484914698, −5.094040859558643, −4.657408549379299, −3.799888917554077, −2.839493854923900, −2.489981606625882, −2.252333709393300, −1.336674811328398, −0.2770131842925118, 0.2770131842925118, 1.336674811328398, 2.252333709393300, 2.489981606625882, 2.839493854923900, 3.799888917554077, 4.657408549379299, 5.094040859558643, 5.373423484914698, 6.027218839241806, 6.717279479920992, 6.867927273108707, 7.618271885796331, 8.409537067236927, 8.654453958023975, 9.246290728627143, 9.626596082317962, 10.24608045283605, 10.71141620613769, 10.97777035850290, 11.64986287192037, 12.23386520519237, 12.78398556421055, 13.25438400172684, 13.41120357429384

Graph of the $Z$-function along the critical line