Properties

Label 2-11466-1.1-c1-0-50
Degree $2$
Conductor $11466$
Sign $-1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 8-s − 2·10-s + 4·11-s + 13-s + 16-s − 6·17-s − 4·19-s − 2·20-s + 4·22-s − 25-s + 26-s + 4·29-s + 4·31-s + 32-s − 6·34-s + 12·37-s − 4·38-s − 2·40-s − 12·41-s − 8·43-s + 4·44-s − 2·47-s − 50-s + 52-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 0.632·10-s + 1.20·11-s + 0.277·13-s + 1/4·16-s − 1.45·17-s − 0.917·19-s − 0.447·20-s + 0.852·22-s − 1/5·25-s + 0.196·26-s + 0.742·29-s + 0.718·31-s + 0.176·32-s − 1.02·34-s + 1.97·37-s − 0.648·38-s − 0.316·40-s − 1.87·41-s − 1.21·43-s + 0.603·44-s − 0.291·47-s − 0.141·50-s + 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 12 T + p T^{2} \) 1.37.am
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.46781651598042, −16.17019218161156, −15.38494118832982, −15.00552581545592, −14.66059112326318, −13.72137050144237, −13.40404429773577, −12.76963152077020, −11.99353698416328, −11.64471237185491, −11.22914289388920, −10.52321644445945, −9.792458349806082, −9.005959832093325, −8.371350814671052, −7.939638614295802, −6.883244768250648, −6.586020908627553, −6.046284418754968, −4.905490667091248, −4.370465790829672, −3.926839410376962, −3.148606834565281, −2.237965947726516, −1.308432402142374, 0, 1.308432402142374, 2.237965947726516, 3.148606834565281, 3.926839410376962, 4.370465790829672, 4.905490667091248, 6.046284418754968, 6.586020908627553, 6.883244768250648, 7.939638614295802, 8.371350814671052, 9.005959832093325, 9.792458349806082, 10.52321644445945, 11.22914289388920, 11.64471237185491, 11.99353698416328, 12.76963152077020, 13.40404429773577, 13.72137050144237, 14.66059112326318, 15.00552581545592, 15.38494118832982, 16.17019218161156, 16.46781651598042

Graph of the $Z$-function along the critical line