Properties

Label 2-11466-1.1-c1-0-31
Degree $2$
Conductor $11466$
Sign $1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 4·5-s + 8-s + 4·10-s − 4·11-s + 13-s + 16-s − 2·17-s − 4·19-s + 4·20-s − 4·22-s + 2·23-s + 11·25-s + 26-s + 6·29-s + 4·31-s + 32-s − 2·34-s + 4·37-s − 4·38-s + 4·40-s + 6·41-s − 4·43-s − 4·44-s + 2·46-s + 11·50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.78·5-s + 0.353·8-s + 1.26·10-s − 1.20·11-s + 0.277·13-s + 1/4·16-s − 0.485·17-s − 0.917·19-s + 0.894·20-s − 0.852·22-s + 0.417·23-s + 11/5·25-s + 0.196·26-s + 1.11·29-s + 0.718·31-s + 0.176·32-s − 0.342·34-s + 0.657·37-s − 0.648·38-s + 0.632·40-s + 0.937·41-s − 0.609·43-s − 0.603·44-s + 0.294·46-s + 1.55·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.931757583\)
\(L(\frac12)\) \(\approx\) \(4.931757583\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.54655634536391, −15.67761689825292, −15.35581921421084, −14.47847130127235, −14.18224893546657, −13.42795668772182, −13.12153675893778, −12.81350119289852, −11.97658491800633, −11.14410057698489, −10.55572888996987, −10.21328098073293, −9.581293071031431, −8.785620557395911, −8.266246901983622, −7.350065836976429, −6.532362776235923, −6.191995792606228, −5.527216069886748, −4.919498095453959, −4.356192221884600, −3.143409183534610, −2.480612285259507, −2.035995548126316, −0.9198558327568641, 0.9198558327568641, 2.035995548126316, 2.480612285259507, 3.143409183534610, 4.356192221884600, 4.919498095453959, 5.527216069886748, 6.191995792606228, 6.532362776235923, 7.350065836976429, 8.266246901983622, 8.785620557395911, 9.581293071031431, 10.21328098073293, 10.55572888996987, 11.14410057698489, 11.97658491800633, 12.81350119289852, 13.12153675893778, 13.42795668772182, 14.18224893546657, 14.47847130127235, 15.35581921421084, 15.67761689825292, 16.54655634536391

Graph of the $Z$-function along the critical line