Properties

Label 2-11466-1.1-c1-0-21
Degree $2$
Conductor $11466$
Sign $1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 8-s − 2·10-s + 4·11-s − 13-s + 16-s − 2·17-s + 4·19-s − 2·20-s + 4·22-s + 4·23-s − 25-s − 26-s + 2·29-s + 32-s − 2·34-s − 2·37-s + 4·38-s − 2·40-s + 2·41-s + 4·43-s + 4·44-s + 4·46-s − 12·47-s − 50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 0.632·10-s + 1.20·11-s − 0.277·13-s + 1/4·16-s − 0.485·17-s + 0.917·19-s − 0.447·20-s + 0.852·22-s + 0.834·23-s − 1/5·25-s − 0.196·26-s + 0.371·29-s + 0.176·32-s − 0.342·34-s − 0.328·37-s + 0.648·38-s − 0.316·40-s + 0.312·41-s + 0.609·43-s + 0.603·44-s + 0.589·46-s − 1.75·47-s − 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.045547784\)
\(L(\frac12)\) \(\approx\) \(3.045547784\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.23501398980454, −15.87368340281751, −15.15954328097834, −14.84582301723071, −14.05194945427202, −13.82634209366865, −12.84177533573739, −12.51221011402026, −11.76336961463657, −11.41963733947729, −11.00215408312169, −10.03207374511305, −9.440862994706839, −8.796526948706556, −8.004273935613916, −7.488476012214550, −6.706501279057586, −6.401076586760148, −5.320894532838322, −4.819906696400552, −3.999475383644771, −3.567420791014992, −2.775830327509546, −1.735445755461261, −0.7358066219325504, 0.7358066219325504, 1.735445755461261, 2.775830327509546, 3.567420791014992, 3.999475383644771, 4.819906696400552, 5.320894532838322, 6.401076586760148, 6.706501279057586, 7.488476012214550, 8.004273935613916, 8.796526948706556, 9.440862994706839, 10.03207374511305, 11.00215408312169, 11.41963733947729, 11.76336961463657, 12.51221011402026, 12.84177533573739, 13.82634209366865, 14.05194945427202, 14.84582301723071, 15.15954328097834, 15.87368340281751, 16.23501398980454

Graph of the $Z$-function along the critical line