Properties

Label 2-11200-1.1-c1-0-40
Degree $2$
Conductor $11200$
Sign $1$
Analytic cond. $89.4324$
Root an. cond. $9.45687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s − 2·9-s − 11-s + 6·13-s + 7·17-s + 19-s + 21-s + 8·23-s − 5·27-s + 6·29-s − 4·31-s − 33-s + 8·37-s + 6·39-s − 5·41-s + 6·47-s + 49-s + 7·51-s + 4·53-s + 57-s − 4·59-s − 6·61-s − 2·63-s + 5·67-s + 8·69-s − 14·71-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s − 2/3·9-s − 0.301·11-s + 1.66·13-s + 1.69·17-s + 0.229·19-s + 0.218·21-s + 1.66·23-s − 0.962·27-s + 1.11·29-s − 0.718·31-s − 0.174·33-s + 1.31·37-s + 0.960·39-s − 0.780·41-s + 0.875·47-s + 1/7·49-s + 0.980·51-s + 0.549·53-s + 0.132·57-s − 0.520·59-s − 0.768·61-s − 0.251·63-s + 0.610·67-s + 0.963·69-s − 1.66·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11200\)    =    \(2^{6} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(89.4324\)
Root analytic conductor: \(9.45687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.270331717\)
\(L(\frac12)\) \(\approx\) \(3.270331717\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 + 15 T + p T^{2} \) 1.73.p
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.46022250686664, −15.91953034631212, −15.22216338563871, −14.69777861940570, −14.27471523234728, −13.60993965855052, −13.23748789484120, −12.52606318423317, −11.74650938249045, −11.31978806352562, −10.67330010177425, −10.12953864043542, −9.261926726286609, −8.734496171001895, −8.317097998239946, −7.641538283400986, −7.074653865778963, −5.967875038825560, −5.725037343153548, −4.868489629179266, −3.991495312272945, −3.121298553378769, −2.897485751873712, −1.571796066760860, −0.8832350978904027, 0.8832350978904027, 1.571796066760860, 2.897485751873712, 3.121298553378769, 3.991495312272945, 4.868489629179266, 5.725037343153548, 5.967875038825560, 7.074653865778963, 7.641538283400986, 8.317097998239946, 8.734496171001895, 9.261926726286609, 10.12953864043542, 10.67330010177425, 11.31978806352562, 11.74650938249045, 12.52606318423317, 13.23748789484120, 13.60993965855052, 14.27471523234728, 14.69777861940570, 15.22216338563871, 15.91953034631212, 16.46022250686664

Graph of the $Z$-function along the critical line