Properties

Label 2-10800-1.1-c1-0-39
Degree $2$
Conductor $10800$
Sign $1$
Analytic cond. $86.2384$
Root an. cond. $9.28646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 3·11-s + 13-s + 6·17-s − 2·19-s + 3·23-s − 6·29-s + 4·31-s + 7·37-s + 2·43-s − 3·47-s − 3·49-s − 6·53-s + 15·59-s + 5·61-s + 2·67-s + 9·71-s − 2·73-s + 6·77-s + 10·79-s + 12·83-s − 18·89-s + 2·91-s − 17·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.755·7-s + 0.904·11-s + 0.277·13-s + 1.45·17-s − 0.458·19-s + 0.625·23-s − 1.11·29-s + 0.718·31-s + 1.15·37-s + 0.304·43-s − 0.437·47-s − 3/7·49-s − 0.824·53-s + 1.95·59-s + 0.640·61-s + 0.244·67-s + 1.06·71-s − 0.234·73-s + 0.683·77-s + 1.12·79-s + 1.31·83-s − 1.90·89-s + 0.209·91-s − 1.72·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10800\)    =    \(2^{4} \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(86.2384\)
Root analytic conductor: \(9.28646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.876097508\)
\(L(\frac12)\) \(\approx\) \(2.876097508\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 15 T + p T^{2} \) 1.59.ap
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.60795147365727, −16.08324014353100, −15.20322716121941, −14.71237664242957, −14.43036610830876, −13.75472095913605, −13.05184025615647, −12.48741916600150, −11.86626777466587, −11.22725053688923, −10.96637313511488, −9.917679086904427, −9.614663025389597, −8.805143446390608, −8.165122243227800, −7.711209589724688, −6.896397549207876, −6.272004735664753, −5.517640149347436, −4.924278833044458, −4.062298968280993, −3.515091214114256, −2.531887676212457, −1.563640041837919, −0.8639172228251283, 0.8639172228251283, 1.563640041837919, 2.531887676212457, 3.515091214114256, 4.062298968280993, 4.924278833044458, 5.517640149347436, 6.272004735664753, 6.896397549207876, 7.711209589724688, 8.165122243227800, 8.805143446390608, 9.614663025389597, 9.917679086904427, 10.96637313511488, 11.22725053688923, 11.86626777466587, 12.48741916600150, 13.05184025615647, 13.75472095913605, 14.43036610830876, 14.71237664242957, 15.20322716121941, 16.08324014353100, 16.60795147365727

Graph of the $Z$-function along the critical line