Properties

Label 2-10800-1.1-c1-0-22
Degree $2$
Conductor $10800$
Sign $1$
Analytic cond. $86.2384$
Root an. cond. $9.28646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 2·11-s + 5·13-s − 4·17-s + 5·19-s + 2·23-s − 10·29-s + 8·31-s + 3·37-s − 6·41-s + 4·43-s + 8·47-s − 6·49-s + 6·53-s − 4·59-s − 5·61-s − 7·67-s + 6·71-s + 9·73-s + 2·77-s − 3·79-s − 2·83-s − 5·91-s − 7·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.377·7-s − 0.603·11-s + 1.38·13-s − 0.970·17-s + 1.14·19-s + 0.417·23-s − 1.85·29-s + 1.43·31-s + 0.493·37-s − 0.937·41-s + 0.609·43-s + 1.16·47-s − 6/7·49-s + 0.824·53-s − 0.520·59-s − 0.640·61-s − 0.855·67-s + 0.712·71-s + 1.05·73-s + 0.227·77-s − 0.337·79-s − 0.219·83-s − 0.524·91-s − 0.710·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10800\)    =    \(2^{4} \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(86.2384\)
Root analytic conductor: \(9.28646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.876681008\)
\(L(\frac12)\) \(\approx\) \(1.876681008\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.57949714172863, −15.81558107087056, −15.45516452874188, −15.08413874822433, −13.93831180503012, −13.74639245404357, −13.08792874264115, −12.70846314904655, −11.76150788221996, −11.31866229325861, −10.76250023573060, −10.14921634626640, −9.375846589685757, −8.950463008209812, −8.225655750554436, −7.589291926220532, −6.921740823993759, −6.190332085199078, −5.665364537778802, −4.892427616081506, −4.068652912586691, −3.372821969704327, −2.658986271692527, −1.659430534106384, −0.6476249905686665, 0.6476249905686665, 1.659430534106384, 2.658986271692527, 3.372821969704327, 4.068652912586691, 4.892427616081506, 5.665364537778802, 6.190332085199078, 6.921740823993759, 7.589291926220532, 8.225655750554436, 8.950463008209812, 9.375846589685757, 10.14921634626640, 10.76250023573060, 11.31866229325861, 11.76150788221996, 12.70846314904655, 13.08792874264115, 13.74639245404357, 13.93831180503012, 15.08413874822433, 15.45516452874188, 15.81558107087056, 16.57949714172863

Graph of the $Z$-function along the critical line