Properties

Label 2-106470-1.1-c1-0-101
Degree $2$
Conductor $106470$
Sign $-1$
Analytic cond. $850.167$
Root an. cond. $29.1576$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 7-s − 8-s − 10-s − 14-s + 16-s − 2·17-s + 20-s − 6·23-s + 25-s + 28-s + 6·29-s + 2·31-s − 32-s + 2·34-s + 35-s + 2·37-s − 40-s − 10·41-s − 12·43-s + 6·46-s + 4·47-s + 49-s − 50-s + 12·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s − 0.353·8-s − 0.316·10-s − 0.267·14-s + 1/4·16-s − 0.485·17-s + 0.223·20-s − 1.25·23-s + 1/5·25-s + 0.188·28-s + 1.11·29-s + 0.359·31-s − 0.176·32-s + 0.342·34-s + 0.169·35-s + 0.328·37-s − 0.158·40-s − 1.56·41-s − 1.82·43-s + 0.884·46-s + 0.583·47-s + 1/7·49-s − 0.141·50-s + 1.64·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(106470\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(850.167\)
Root analytic conductor: \(29.1576\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 106470,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.89416539439826, −13.47272138017906, −13.07259448236264, −12.25157417200776, −11.84277175722777, −11.65084486871963, −10.76425028504043, −10.51555304288078, −9.912878366811480, −9.675913641981502, −8.878935293837134, −8.505791519845330, −8.091679671964767, −7.584783981943678, −6.732512175069137, −6.595445085666447, −5.985577257759292, −5.145761055430341, −4.974129044078559, −3.999889326112166, −3.581221457814588, −2.629166122925249, −2.241092860916720, −1.581791023774416, −0.8831648898504399, 0, 0.8831648898504399, 1.581791023774416, 2.241092860916720, 2.629166122925249, 3.581221457814588, 3.999889326112166, 4.974129044078559, 5.145761055430341, 5.985577257759292, 6.595445085666447, 6.732512175069137, 7.584783981943678, 8.091679671964767, 8.505791519845330, 8.878935293837134, 9.675913641981502, 9.912878366811480, 10.51555304288078, 10.76425028504043, 11.65084486871963, 11.84277175722777, 12.25157417200776, 13.07259448236264, 13.47272138017906, 13.89416539439826

Graph of the $Z$-function along the critical line