Properties

Label 2-103488-1.1-c1-0-126
Degree $2$
Conductor $103488$
Sign $-1$
Analytic cond. $826.355$
Root an. cond. $28.7464$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s + 9-s + 11-s + 13-s + 3·15-s + 4·17-s + 3·19-s + 2·23-s + 4·25-s − 27-s − 5·29-s − 33-s − 9·37-s − 39-s − 10·43-s − 3·45-s − 5·47-s − 4·51-s + 6·53-s − 3·55-s − 3·57-s + 13·59-s + 6·61-s − 3·65-s + 67-s − 2·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s + 1/3·9-s + 0.301·11-s + 0.277·13-s + 0.774·15-s + 0.970·17-s + 0.688·19-s + 0.417·23-s + 4/5·25-s − 0.192·27-s − 0.928·29-s − 0.174·33-s − 1.47·37-s − 0.160·39-s − 1.52·43-s − 0.447·45-s − 0.729·47-s − 0.560·51-s + 0.824·53-s − 0.404·55-s − 0.397·57-s + 1.69·59-s + 0.768·61-s − 0.372·65-s + 0.122·67-s − 0.240·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 103488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 103488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(103488\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(826.355\)
Root analytic conductor: \(28.7464\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 103488,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 9 T + p T^{2} \) 1.37.j
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 13 T + p T^{2} \) 1.59.an
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.96682491647261, −13.37580075871842, −12.93511292300727, −12.30967006175533, −11.88052475754772, −11.66203544135029, −11.16439173690805, −10.63686385933055, −10.09051213263696, −9.600778376271295, −8.978580693560247, −8.369239123691100, −7.961469418027166, −7.472535051375168, −6.830071241512934, −6.659554579161799, −5.655152638941797, −5.287185343115240, −4.833156892983767, −3.979832895239152, −3.588721496047189, −3.285850385183474, −2.242966051257446, −1.407890717212535, −0.7710232063163113, 0, 0.7710232063163113, 1.407890717212535, 2.242966051257446, 3.285850385183474, 3.588721496047189, 3.979832895239152, 4.833156892983767, 5.287185343115240, 5.655152638941797, 6.659554579161799, 6.830071241512934, 7.472535051375168, 7.961469418027166, 8.369239123691100, 8.978580693560247, 9.600778376271295, 10.09051213263696, 10.63686385933055, 11.16439173690805, 11.66203544135029, 11.88052475754772, 12.30967006175533, 12.93511292300727, 13.37580075871842, 13.96682491647261

Graph of the $Z$-function along the critical line