Properties

Label 2-102960-1.1-c1-0-112
Degree $2$
Conductor $102960$
Sign $-1$
Analytic cond. $822.139$
Root an. cond. $28.6729$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·7-s + 11-s − 13-s − 2·17-s − 4·19-s + 25-s − 2·29-s − 8·31-s + 4·35-s − 6·37-s + 6·41-s + 4·43-s + 9·49-s + 2·53-s + 55-s − 12·59-s + 2·61-s − 65-s + 12·67-s − 14·73-s + 4·77-s + 4·83-s − 2·85-s + 10·89-s − 4·91-s − 4·95-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.51·7-s + 0.301·11-s − 0.277·13-s − 0.485·17-s − 0.917·19-s + 1/5·25-s − 0.371·29-s − 1.43·31-s + 0.676·35-s − 0.986·37-s + 0.937·41-s + 0.609·43-s + 9/7·49-s + 0.274·53-s + 0.134·55-s − 1.56·59-s + 0.256·61-s − 0.124·65-s + 1.46·67-s − 1.63·73-s + 0.455·77-s + 0.439·83-s − 0.216·85-s + 1.05·89-s − 0.419·91-s − 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 102960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(102960\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(822.139\)
Root analytic conductor: \(28.6729\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 102960,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.13429789000790, −13.48710574203706, −13.03452588610357, −12.45873660808924, −12.06879578614612, −11.40680264403984, −10.96995042411194, −10.72458387784185, −10.13628460697859, −9.356805936253329, −9.041589080030095, −8.549523403140021, −7.999537823214150, −7.464470330217877, −7.026221848586667, −6.353847005159391, −5.765909162812647, −5.282569448478397, −4.729044549988807, −4.238751126088677, −3.691659040742382, −2.807749784804541, −2.001430891855962, −1.852995790389896, −1.008945191479096, 0, 1.008945191479096, 1.852995790389896, 2.001430891855962, 2.807749784804541, 3.691659040742382, 4.238751126088677, 4.729044549988807, 5.282569448478397, 5.765909162812647, 6.353847005159391, 7.026221848586667, 7.464470330217877, 7.999537823214150, 8.549523403140021, 9.041589080030095, 9.356805936253329, 10.13628460697859, 10.72458387784185, 10.96995042411194, 11.40680264403984, 12.06879578614612, 12.45873660808924, 13.03452588610357, 13.48710574203706, 14.13429789000790

Graph of the $Z$-function along the critical line