Properties

Label 2-101568-1.1-c1-0-66
Degree $2$
Conductor $101568$
Sign $-1$
Analytic cond. $811.024$
Root an. cond. $28.4784$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s + 9-s + 2·11-s + 2·13-s − 2·17-s + 8·19-s − 2·21-s − 5·25-s − 27-s − 6·29-s + 8·31-s − 2·33-s − 10·37-s − 2·39-s + 10·41-s − 4·43-s − 8·47-s − 3·49-s + 2·51-s − 12·53-s − 8·57-s + 12·59-s − 6·61-s + 2·63-s + 12·67-s − 12·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s + 1/3·9-s + 0.603·11-s + 0.554·13-s − 0.485·17-s + 1.83·19-s − 0.436·21-s − 25-s − 0.192·27-s − 1.11·29-s + 1.43·31-s − 0.348·33-s − 1.64·37-s − 0.320·39-s + 1.56·41-s − 0.609·43-s − 1.16·47-s − 3/7·49-s + 0.280·51-s − 1.64·53-s − 1.05·57-s + 1.56·59-s − 0.768·61-s + 0.251·63-s + 1.46·67-s − 1.42·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 101568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 101568 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(101568\)    =    \(2^{6} \cdot 3 \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(811.024\)
Root analytic conductor: \(28.4784\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 101568,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
23 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.86043630162051, −13.52856285599892, −13.14514467700594, −12.25397125230586, −12.02479568273377, −11.44741425668981, −11.21516366829186, −10.71705555818070, −9.977395174117877, −9.567135068150043, −9.167355342212650, −8.434331094357716, −7.909976970743293, −7.575251639052127, −6.797478835423934, −6.462917677038486, −5.777498789041669, −5.295165262140705, −4.835963286811486, −4.195376171939442, −3.608287284573605, −3.075845560080502, −2.089816904127357, −1.512251275243235, −0.9885629193813989, 0, 0.9885629193813989, 1.512251275243235, 2.089816904127357, 3.075845560080502, 3.608287284573605, 4.195376171939442, 4.835963286811486, 5.295165262140705, 5.777498789041669, 6.462917677038486, 6.797478835423934, 7.575251639052127, 7.909976970743293, 8.434331094357716, 9.167355342212650, 9.567135068150043, 9.977395174117877, 10.71705555818070, 11.21516366829186, 11.44741425668981, 12.02479568273377, 12.25397125230586, 13.14514467700594, 13.52856285599892, 13.86043630162051

Graph of the $Z$-function along the critical line