Properties

Label 2-101568-1.1-c1-0-11
Degree $2$
Conductor $101568$
Sign $1$
Analytic cond. $811.024$
Root an. cond. $28.4784$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s + 4·11-s + 3·13-s − 8·17-s − 4·19-s − 21-s − 5·25-s + 27-s + 4·29-s + 8·31-s + 4·33-s + 37-s + 3·39-s + 8·41-s + 43-s + 6·47-s − 6·49-s − 8·51-s − 6·53-s − 4·57-s + 6·59-s − 15·61-s − 63-s − 13·67-s + 10·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s + 1.20·11-s + 0.832·13-s − 1.94·17-s − 0.917·19-s − 0.218·21-s − 25-s + 0.192·27-s + 0.742·29-s + 1.43·31-s + 0.696·33-s + 0.164·37-s + 0.480·39-s + 1.24·41-s + 0.152·43-s + 0.875·47-s − 6/7·49-s − 1.12·51-s − 0.824·53-s − 0.529·57-s + 0.781·59-s − 1.92·61-s − 0.125·63-s − 1.58·67-s + 1.18·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 101568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 101568 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(101568\)    =    \(2^{6} \cdot 3 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(811.024\)
Root analytic conductor: \(28.4784\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 101568,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.719470464\)
\(L(\frac12)\) \(\approx\) \(2.719470464\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
23 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 + 4 T + p T^{2} \) 1.19.e
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 15 T + p T^{2} \) 1.61.p
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.78613073279618, −13.28456960562025, −12.93932217570791, −12.24396263524874, −11.84978305650921, −11.24266153223092, −10.80931804760111, −10.34539057700395, −9.601552856344438, −9.225297674271498, −8.836512009104736, −8.340766592193756, −7.883025201764762, −7.092138589436511, −6.601075546735291, −6.212785626796337, −5.886318996110381, −4.679018442882983, −4.307175192200436, −4.034686650963862, −3.202229365356776, −2.650571307813159, −1.973978895363846, −1.382481141203957, −0.4967684529146761, 0.4967684529146761, 1.382481141203957, 1.973978895363846, 2.650571307813159, 3.202229365356776, 4.034686650963862, 4.307175192200436, 4.679018442882983, 5.886318996110381, 6.212785626796337, 6.601075546735291, 7.092138589436511, 7.883025201764762, 8.340766592193756, 8.836512009104736, 9.225297674271498, 9.601552856344438, 10.34539057700395, 10.80931804760111, 11.24266153223092, 11.84978305650921, 12.24396263524874, 12.93932217570791, 13.28456960562025, 13.78613073279618

Graph of the $Z$-function along the critical line