Properties

Label 16-31e16-1.1-c1e8-0-4
Degree $16$
Conductor $7.274\times 10^{23}$
Sign $1$
Analytic cond. $1.20227\times 10^{7}$
Root an. cond. $2.77013$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·2-s + 3-s + 23·4-s + 6·5-s − 6·6-s + 3·7-s − 72·8-s − 2·9-s − 36·10-s − 2·11-s + 23·12-s + 6·13-s − 18·14-s + 6·15-s + 199·16-s − 3·17-s + 12·18-s + 5·19-s + 138·20-s + 3·21-s + 12·22-s − 22·23-s − 72·24-s + 31·25-s − 36·26-s + 3·27-s + 69·28-s + ⋯
L(s)  = 1  − 4.24·2-s + 0.577·3-s + 23/2·4-s + 2.68·5-s − 2.44·6-s + 1.13·7-s − 25.4·8-s − 2/3·9-s − 11.3·10-s − 0.603·11-s + 6.63·12-s + 1.66·13-s − 4.81·14-s + 1.54·15-s + 49.7·16-s − 0.727·17-s + 2.82·18-s + 1.14·19-s + 30.8·20-s + 0.654·21-s + 2.55·22-s − 4.58·23-s − 14.6·24-s + 31/5·25-s − 7.06·26-s + 0.577·27-s + 13.0·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(31^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(31^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(31^{16}\)
Sign: $1$
Analytic conductor: \(1.20227\times 10^{7}\)
Root analytic conductor: \(2.77013\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 31^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.6268554449\)
\(L(\frac12)\) \(\approx\) \(0.6268554449\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( ( 1 + 3 T + p T^{2} + T^{4} + p^{3} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
3 \( 1 - T + p T^{2} - 8 T^{3} + 8 T^{4} + 7 T^{5} + 2 p T^{6} + 56 T^{7} - 137 T^{8} + 56 p T^{9} + 2 p^{3} T^{10} + 7 p^{3} T^{11} + 8 p^{4} T^{12} - 8 p^{5} T^{13} + p^{7} T^{14} - p^{7} T^{15} + p^{8} T^{16} \)
5 \( ( 1 - 3 T - 2 T^{2} - 3 T^{3} + 51 T^{4} - 3 p T^{5} - 2 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
7 \( 1 - 3 T + p T^{2} - 36 T^{3} + 108 T^{4} - 219 T^{5} + 122 p T^{6} - 2628 T^{7} + 5483 T^{8} - 2628 p T^{9} + 122 p^{3} T^{10} - 219 p^{3} T^{11} + 108 p^{4} T^{12} - 36 p^{5} T^{13} + p^{7} T^{14} - 3 p^{7} T^{15} + p^{8} T^{16} \)
11 \( 1 + 2 T - 9 T^{2} - 42 T^{3} - 124 T^{4} - 84 T^{5} + 629 T^{6} + 3734 T^{7} + 13467 T^{8} + 3734 p T^{9} + 629 p^{2} T^{10} - 84 p^{3} T^{11} - 124 p^{4} T^{12} - 42 p^{5} T^{13} - 9 p^{6} T^{14} + 2 p^{7} T^{15} + p^{8} T^{16} \)
13 \( 1 - 6 T + p T^{2} + 102 T^{3} - 792 T^{4} + 2892 T^{5} - 1009 T^{6} - 36864 T^{7} + 214223 T^{8} - 36864 p T^{9} - 1009 p^{2} T^{10} + 2892 p^{3} T^{11} - 792 p^{4} T^{12} + 102 p^{5} T^{13} + p^{7} T^{14} - 6 p^{7} T^{15} + p^{8} T^{16} \)
17 \( 1 + 3 T + 7 T^{2} - 144 T^{3} - 732 T^{4} - 1641 T^{5} + 1934 T^{6} + 49698 T^{7} + 169253 T^{8} + 49698 p T^{9} + 1934 p^{2} T^{10} - 1641 p^{3} T^{11} - 732 p^{4} T^{12} - 144 p^{5} T^{13} + 7 p^{6} T^{14} + 3 p^{7} T^{15} + p^{8} T^{16} \)
19 \( 1 - 5 T + p T^{2} - 160 T^{3} + 800 T^{4} - 2765 T^{5} + 914 p T^{6} - 88480 T^{7} + 312079 T^{8} - 88480 p T^{9} + 914 p^{3} T^{10} - 2765 p^{3} T^{11} + 800 p^{4} T^{12} - 160 p^{5} T^{13} + p^{7} T^{14} - 5 p^{7} T^{15} + p^{8} T^{16} \)
23 \( ( 1 + 11 T + 38 T^{2} + 125 T^{3} + 821 T^{4} + 125 p T^{5} + 38 p^{2} T^{6} + 11 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
29 \( ( 1 + 5 T + 31 T^{2} + 115 T^{3} + 96 T^{4} + 115 p T^{5} + 31 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
37 \( ( 1 + 4 T - 57 T^{2} - 4 T^{3} + 3368 T^{4} - 4 p T^{5} - 57 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
41 \( 1 + 8 T + p T^{2} - 528 T^{3} - 6224 T^{4} - 39696 T^{5} - 2521 T^{6} + 1579436 T^{7} + 15159727 T^{8} + 1579436 p T^{9} - 2521 p^{2} T^{10} - 39696 p^{3} T^{11} - 6224 p^{4} T^{12} - 528 p^{5} T^{13} + p^{7} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
43 \( 1 - T + 28 T^{2} - 443 T^{3} - 232 T^{4} + 6152 T^{5} - 2224 T^{6} + 797146 T^{7} - 5551967 T^{8} + 797146 p T^{9} - 2224 p^{2} T^{10} + 6152 p^{3} T^{11} - 232 p^{4} T^{12} - 443 p^{5} T^{13} + 28 p^{6} T^{14} - p^{7} T^{15} + p^{8} T^{16} \)
47 \( ( 1 - 7 T - 23 T^{2} + 385 T^{3} - 1284 T^{4} + 385 p T^{5} - 23 p^{2} T^{6} - 7 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
53 \( 1 - 21 T + 323 T^{2} - 3588 T^{3} + 35568 T^{4} - 324633 T^{5} + 2767366 T^{6} - 22572954 T^{7} + 167761313 T^{8} - 22572954 p T^{9} + 2767366 p^{2} T^{10} - 324633 p^{3} T^{11} + 35568 p^{4} T^{12} - 3588 p^{5} T^{13} + 323 p^{6} T^{14} - 21 p^{7} T^{15} + p^{8} T^{16} \)
59 \( 1 + 5 T - T^{2} - 900 T^{3} - 8060 T^{4} - 17835 T^{5} + 134126 T^{6} + 3072320 T^{7} + 18108079 T^{8} + 3072320 p T^{9} + 134126 p^{2} T^{10} - 17835 p^{3} T^{11} - 8060 p^{4} T^{12} - 900 p^{5} T^{13} - p^{6} T^{14} + 5 p^{7} T^{15} + p^{8} T^{16} \)
61 \( ( 1 + 4 T + 46 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{4} \)
67 \( ( 1 - 4 T - 117 T^{2} + 4 T^{3} + 12128 T^{4} + 4 p T^{5} - 117 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
71 \( 1 - 7 T - 4 T^{2} + 1227 T^{3} - 13364 T^{4} + 49044 T^{5} + 214904 T^{6} - 6815734 T^{7} + 62113357 T^{8} - 6815734 p T^{9} + 214904 p^{2} T^{10} + 49044 p^{3} T^{11} - 13364 p^{4} T^{12} + 1227 p^{5} T^{13} - 4 p^{6} T^{14} - 7 p^{7} T^{15} + p^{8} T^{16} \)
73 \( 1 - 21 T + 208 T^{2} + 297 T^{3} - 27162 T^{4} + 338082 T^{5} - 1041544 T^{6} - 15918264 T^{7} + 260450783 T^{8} - 15918264 p T^{9} - 1041544 p^{2} T^{10} + 338082 p^{3} T^{11} - 27162 p^{4} T^{12} + 297 p^{5} T^{13} + 208 p^{6} T^{14} - 21 p^{7} T^{15} + p^{8} T^{16} \)
79 \( 1 + p T^{2} - p^{3} T^{6} - p^{4} T^{8} - p^{5} T^{10} + p^{7} T^{14} + p^{8} T^{16} \)
83 \( 1 + 14 T + 183 T^{2} + 42 T^{3} - 7462 T^{4} - 179508 T^{5} + 16211 T^{6} + 9573326 T^{7} + 219347043 T^{8} + 9573326 p T^{9} + 16211 p^{2} T^{10} - 179508 p^{3} T^{11} - 7462 p^{4} T^{12} + 42 p^{5} T^{13} + 183 p^{6} T^{14} + 14 p^{7} T^{15} + p^{8} T^{16} \)
89 \( ( 1 + 5 T - 29 T^{2} - 785 T^{3} - 624 T^{4} - 785 p T^{5} - 29 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
97 \( ( 1 + 3 T + 182 T^{2} - 345 T^{3} + 16591 T^{4} - 345 p T^{5} + 182 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.11785362386263796915429844500, −4.04649440355080535665346968830, −3.91171049420904226129017720215, −3.85065884087830684620774896299, −3.79902916918042833384525830623, −3.42586768077915414588102727396, −3.26575178780436515427297702479, −3.08577623125226845634543434428, −2.94233324374835259721826749716, −2.82856616796589576643485553010, −2.79916642327298704340249926732, −2.76964943195737707604289556942, −2.45464289867226235506060072542, −2.38639132884310982688608931021, −2.11634963730662732143897465048, −1.96202862526523815842587911030, −1.83563558880710970582614596099, −1.73153472587432438911458436904, −1.66163765365748164876243263975, −1.60007125143123260745248295434, −1.28973116896153040280460046712, −1.08008172402387320784562462080, −0.71539967031560814626829494069, −0.68018641171872669942947275026, −0.15859220531520854148455475806, 0.15859220531520854148455475806, 0.68018641171872669942947275026, 0.71539967031560814626829494069, 1.08008172402387320784562462080, 1.28973116896153040280460046712, 1.60007125143123260745248295434, 1.66163765365748164876243263975, 1.73153472587432438911458436904, 1.83563558880710970582614596099, 1.96202862526523815842587911030, 2.11634963730662732143897465048, 2.38639132884310982688608931021, 2.45464289867226235506060072542, 2.76964943195737707604289556942, 2.79916642327298704340249926732, 2.82856616796589576643485553010, 2.94233324374835259721826749716, 3.08577623125226845634543434428, 3.26575178780436515427297702479, 3.42586768077915414588102727396, 3.79902916918042833384525830623, 3.85065884087830684620774896299, 3.91171049420904226129017720215, 4.04649440355080535665346968830, 4.11785362386263796915429844500

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.