Properties

Label 961.2.g.c.547.1
Level $961$
Weight $2$
Character 961.547
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-6,1,6,6,-2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 547.1
Root \(-0.104528 - 0.994522i\) of defining polynomial
Character \(\chi\) \(=\) 961.547
Dual form 961.2.g.c.448.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.190983 - 0.587785i) q^{2} +(0.669131 + 0.743145i) q^{3} +(1.30902 - 0.951057i) q^{4} +(1.30902 + 2.26728i) q^{5} +(0.309017 - 0.535233i) q^{6} +(-0.313585 - 2.98357i) q^{7} +(-1.80902 - 1.31433i) q^{8} +(0.209057 - 1.98904i) q^{9} +(1.08268 - 1.20243i) q^{10} +(0.697887 + 0.310719i) q^{11} +(1.58268 + 0.336408i) q^{12} +(4.74803 - 1.00922i) q^{13} +(-1.69381 + 0.754131i) q^{14} +(-0.809017 + 2.48990i) q^{15} +(0.572949 - 1.76336i) q^{16} +(-0.215659 + 0.0960175i) q^{17} +(-1.20906 + 0.256993i) q^{18} +(-4.89074 - 1.03956i) q^{19} +(3.86984 + 1.72296i) q^{20} +(2.00739 - 2.22943i) q^{21} +(0.0493516 - 0.469550i) q^{22} +(-4.42705 - 3.21644i) q^{23} +(-0.233733 - 2.22382i) q^{24} +(-0.927051 + 1.60570i) q^{25} +(-1.50000 - 2.59808i) q^{26} +(4.04508 - 2.93893i) q^{27} +(-3.24803 - 3.60730i) q^{28} +(2.66312 + 8.19624i) q^{29} +1.61803 q^{30} -5.61803 q^{32} +(0.236068 + 0.726543i) q^{33} +(0.0976248 + 0.108423i) q^{34} +(6.35410 - 4.61653i) q^{35} +(-1.61803 - 2.80252i) q^{36} +(0.118034 - 0.204441i) q^{37} +(0.323011 + 3.07324i) q^{38} +(3.92705 + 2.85317i) q^{39} +(0.611920 - 5.82203i) q^{40} +(4.33070 - 4.80973i) q^{41} +(-1.69381 - 0.754131i) q^{42} +(-4.51712 - 0.960143i) q^{43} +(1.20906 - 0.256993i) q^{44} +(4.78339 - 2.12970i) q^{45} +(-1.04508 + 3.21644i) q^{46} +(-1.04508 + 3.21644i) q^{47} +(1.69381 - 0.754131i) q^{48} +(-1.95630 + 0.415823i) q^{49} +(1.12086 + 0.238246i) q^{50} +(-0.215659 - 0.0960175i) q^{51} +(5.25542 - 5.83674i) q^{52} +(-1.32837 + 12.6386i) q^{53} +(-2.50000 - 1.81636i) q^{54} +(0.209057 + 1.98904i) q^{55} +(-3.35410 + 5.80948i) q^{56} +(-2.50000 - 4.33013i) q^{57} +(4.30902 - 3.13068i) q^{58} +(6.33810 + 7.03917i) q^{59} +(1.30902 + 4.02874i) q^{60} +6.94427 q^{61} -6.00000 q^{63} +(-0.0729490 - 0.224514i) q^{64} +(8.50345 + 9.44404i) q^{65} +(0.381966 - 0.277515i) q^{66} +(2.11803 + 3.66854i) q^{67} +(-0.190983 + 0.330792i) q^{68} +(-0.571994 - 5.44216i) q^{69} +(-3.92705 - 2.85317i) q^{70} +(-0.00942533 + 0.0896760i) q^{71} +(-2.99244 + 3.32344i) q^{72} +(7.82206 + 3.48260i) q^{73} +(-0.142710 - 0.0303339i) q^{74} +(-1.81359 + 0.385489i) q^{75} +(-7.39074 + 3.29057i) q^{76} +(0.708204 - 2.17963i) q^{77} +(0.927051 - 2.85317i) q^{78} +(4.74803 - 1.00922i) q^{80} +(-0.978148 - 0.207912i) q^{81} +(-3.65418 - 1.62695i) q^{82} +(2.73686 - 3.03959i) q^{83} +(0.507392 - 4.82751i) q^{84} +(-0.500000 - 0.363271i) q^{85} +(0.298335 + 2.83847i) q^{86} +(-4.30902 + 7.46344i) q^{87} +(-0.854102 - 1.47935i) q^{88} +(-5.16312 + 3.75123i) q^{89} +(-2.16535 - 2.40487i) q^{90} +(-4.50000 - 13.8496i) q^{91} -8.85410 q^{92} +2.09017 q^{94} +(-4.04508 - 12.4495i) q^{95} +(-3.75920 - 4.17501i) q^{96} +(4.28115 - 3.11044i) q^{97} +(0.618034 + 1.07047i) q^{98} +(0.763932 - 1.32317i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} + q^{3} + 6 q^{4} + 6 q^{5} - 2 q^{6} + 3 q^{7} - 10 q^{8} - 2 q^{9} - 2 q^{10} - 2 q^{11} + 2 q^{12} + 6 q^{13} - 6 q^{14} - 2 q^{15} + 18 q^{16} - 3 q^{17} - 6 q^{18} + 5 q^{19} + 7 q^{20}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{4}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.190983 0.587785i −0.135045 0.415627i 0.860552 0.509363i \(-0.170119\pi\)
−0.995597 + 0.0937362i \(0.970119\pi\)
\(3\) 0.669131 + 0.743145i 0.386323 + 0.429055i 0.904668 0.426116i \(-0.140119\pi\)
−0.518346 + 0.855171i \(0.673452\pi\)
\(4\) 1.30902 0.951057i 0.654508 0.475528i
\(5\) 1.30902 + 2.26728i 0.585410 + 1.01396i 0.994824 + 0.101611i \(0.0323999\pi\)
−0.409414 + 0.912349i \(0.634267\pi\)
\(6\) 0.309017 0.535233i 0.126156 0.218508i
\(7\) −0.313585 2.98357i −0.118524 1.12768i −0.878504 0.477735i \(-0.841458\pi\)
0.759980 0.649947i \(-0.225209\pi\)
\(8\) −1.80902 1.31433i −0.639584 0.464685i
\(9\) 0.209057 1.98904i 0.0696856 0.663015i
\(10\) 1.08268 1.20243i 0.342372 0.380243i
\(11\) 0.697887 + 0.310719i 0.210421 + 0.0936853i 0.509241 0.860624i \(-0.329926\pi\)
−0.298820 + 0.954310i \(0.596593\pi\)
\(12\) 1.58268 + 0.336408i 0.456879 + 0.0971127i
\(13\) 4.74803 1.00922i 1.31687 0.279909i 0.504680 0.863307i \(-0.331611\pi\)
0.812186 + 0.583398i \(0.198277\pi\)
\(14\) −1.69381 + 0.754131i −0.452689 + 0.201550i
\(15\) −0.809017 + 2.48990i −0.208887 + 0.642889i
\(16\) 0.572949 1.76336i 0.143237 0.440839i
\(17\) −0.215659 + 0.0960175i −0.0523049 + 0.0232877i −0.432722 0.901527i \(-0.642447\pi\)
0.380417 + 0.924815i \(0.375780\pi\)
\(18\) −1.20906 + 0.256993i −0.284977 + 0.0605738i
\(19\) −4.89074 1.03956i −1.12201 0.238491i −0.390689 0.920523i \(-0.627763\pi\)
−0.731323 + 0.682031i \(0.761097\pi\)
\(20\) 3.86984 + 1.72296i 0.865323 + 0.385266i
\(21\) 2.00739 2.22943i 0.438049 0.486502i
\(22\) 0.0493516 0.469550i 0.0105218 0.100108i
\(23\) −4.42705 3.21644i −0.923104 0.670674i 0.0211907 0.999775i \(-0.493254\pi\)
−0.944295 + 0.329101i \(0.893254\pi\)
\(24\) −0.233733 2.22382i −0.0477105 0.453935i
\(25\) −0.927051 + 1.60570i −0.185410 + 0.321140i
\(26\) −1.50000 2.59808i −0.294174 0.509525i
\(27\) 4.04508 2.93893i 0.778477 0.565597i
\(28\) −3.24803 3.60730i −0.613820 0.681716i
\(29\) 2.66312 + 8.19624i 0.494529 + 1.52200i 0.817690 + 0.575659i \(0.195254\pi\)
−0.323161 + 0.946344i \(0.604746\pi\)
\(30\) 1.61803 0.295411
\(31\) 0 0
\(32\) −5.61803 −0.993137
\(33\) 0.236068 + 0.726543i 0.0410942 + 0.126475i
\(34\) 0.0976248 + 0.108423i 0.0167425 + 0.0185945i
\(35\) 6.35410 4.61653i 1.07404 0.780335i
\(36\) −1.61803 2.80252i −0.269672 0.467086i
\(37\) 0.118034 0.204441i 0.0194047 0.0336099i −0.856160 0.516711i \(-0.827156\pi\)
0.875565 + 0.483101i \(0.160490\pi\)
\(38\) 0.323011 + 3.07324i 0.0523993 + 0.498546i
\(39\) 3.92705 + 2.85317i 0.628831 + 0.456873i
\(40\) 0.611920 5.82203i 0.0967531 0.920544i
\(41\) 4.33070 4.80973i 0.676342 0.751154i −0.303082 0.952964i \(-0.598016\pi\)
0.979425 + 0.201810i \(0.0646824\pi\)
\(42\) −1.69381 0.754131i −0.261360 0.116365i
\(43\) −4.51712 0.960143i −0.688854 0.146420i −0.149831 0.988712i \(-0.547873\pi\)
−0.539023 + 0.842291i \(0.681206\pi\)
\(44\) 1.20906 0.256993i 0.182272 0.0387431i
\(45\) 4.78339 2.12970i 0.713065 0.317477i
\(46\) −1.04508 + 3.21644i −0.154089 + 0.474238i
\(47\) −1.04508 + 3.21644i −0.152441 + 0.469166i −0.997893 0.0648863i \(-0.979332\pi\)
0.845451 + 0.534052i \(0.179332\pi\)
\(48\) 1.69381 0.754131i 0.244480 0.108849i
\(49\) −1.95630 + 0.415823i −0.279471 + 0.0594033i
\(50\) 1.12086 + 0.238246i 0.158513 + 0.0336930i
\(51\) −0.215659 0.0960175i −0.0301983 0.0134451i
\(52\) 5.25542 5.83674i 0.728796 0.809410i
\(53\) −1.32837 + 12.6386i −0.182466 + 1.73604i 0.394166 + 0.919039i \(0.371033\pi\)
−0.576632 + 0.817004i \(0.695633\pi\)
\(54\) −2.50000 1.81636i −0.340207 0.247175i
\(55\) 0.209057 + 1.98904i 0.0281892 + 0.268203i
\(56\) −3.35410 + 5.80948i −0.448211 + 0.776324i
\(57\) −2.50000 4.33013i −0.331133 0.573539i
\(58\) 4.30902 3.13068i 0.565802 0.411079i
\(59\) 6.33810 + 7.03917i 0.825150 + 0.916422i 0.997645 0.0685886i \(-0.0218496\pi\)
−0.172495 + 0.985010i \(0.555183\pi\)
\(60\) 1.30902 + 4.02874i 0.168993 + 0.520108i
\(61\) 6.94427 0.889123 0.444561 0.895748i \(-0.353360\pi\)
0.444561 + 0.895748i \(0.353360\pi\)
\(62\) 0 0
\(63\) −6.00000 −0.755929
\(64\) −0.0729490 0.224514i −0.00911863 0.0280642i
\(65\) 8.50345 + 9.44404i 1.05472 + 1.17139i
\(66\) 0.381966 0.277515i 0.0470168 0.0341597i
\(67\) 2.11803 + 3.66854i 0.258759 + 0.448184i 0.965910 0.258879i \(-0.0833531\pi\)
−0.707151 + 0.707063i \(0.750020\pi\)
\(68\) −0.190983 + 0.330792i −0.0231601 + 0.0401145i
\(69\) −0.571994 5.44216i −0.0688600 0.655159i
\(70\) −3.92705 2.85317i −0.469372 0.341019i
\(71\) −0.00942533 + 0.0896760i −0.00111858 + 0.0106426i −0.995067 0.0992057i \(-0.968370\pi\)
0.993948 + 0.109848i \(0.0350365\pi\)
\(72\) −2.99244 + 3.32344i −0.352663 + 0.391672i
\(73\) 7.82206 + 3.48260i 0.915502 + 0.407608i 0.809744 0.586784i \(-0.199606\pi\)
0.105759 + 0.994392i \(0.466273\pi\)
\(74\) −0.142710 0.0303339i −0.0165897 0.00352625i
\(75\) −1.81359 + 0.385489i −0.209415 + 0.0445125i
\(76\) −7.39074 + 3.29057i −0.847776 + 0.377454i
\(77\) 0.708204 2.17963i 0.0807073 0.248392i
\(78\) 0.927051 2.85317i 0.104968 0.323058i
\(79\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(80\) 4.74803 1.00922i 0.530846 0.112835i
\(81\) −0.978148 0.207912i −0.108683 0.0231013i
\(82\) −3.65418 1.62695i −0.403537 0.179666i
\(83\) 2.73686 3.03959i 0.300409 0.333638i −0.573975 0.818873i \(-0.694599\pi\)
0.874384 + 0.485235i \(0.161266\pi\)
\(84\) 0.507392 4.82751i 0.0553610 0.526725i
\(85\) −0.500000 0.363271i −0.0542326 0.0394023i
\(86\) 0.298335 + 2.83847i 0.0321703 + 0.306080i
\(87\) −4.30902 + 7.46344i −0.461975 + 0.800164i
\(88\) −0.854102 1.47935i −0.0910476 0.157699i
\(89\) −5.16312 + 3.75123i −0.547290 + 0.397629i −0.826785 0.562518i \(-0.809833\pi\)
0.279496 + 0.960147i \(0.409833\pi\)
\(90\) −2.16535 2.40487i −0.228248 0.253495i
\(91\) −4.50000 13.8496i −0.471728 1.45183i
\(92\) −8.85410 −0.923104
\(93\) 0 0
\(94\) 2.09017 0.215585
\(95\) −4.04508 12.4495i −0.415017 1.27729i
\(96\) −3.75920 4.17501i −0.383672 0.426110i
\(97\) 4.28115 3.11044i 0.434685 0.315817i −0.348834 0.937184i \(-0.613422\pi\)
0.783520 + 0.621367i \(0.213422\pi\)
\(98\) 0.618034 + 1.07047i 0.0624309 + 0.108133i
\(99\) 0.763932 1.32317i 0.0767781 0.132983i
\(100\) 0.313585 + 2.98357i 0.0313585 + 0.298357i
\(101\) −3.85410 2.80017i −0.383497 0.278627i 0.379288 0.925279i \(-0.376169\pi\)
−0.762786 + 0.646651i \(0.776169\pi\)
\(102\) −0.0152505 + 0.145099i −0.00151002 + 0.0143669i
\(103\) −0.0976248 + 0.108423i −0.00961926 + 0.0106833i −0.747935 0.663772i \(-0.768955\pi\)
0.738316 + 0.674455i \(0.235621\pi\)
\(104\) −9.91572 4.41476i −0.972316 0.432903i
\(105\) 7.68247 + 1.63296i 0.749732 + 0.159361i
\(106\) 7.68247 1.63296i 0.746188 0.158607i
\(107\) 0.995920 0.443412i 0.0962792 0.0428663i −0.358032 0.933709i \(-0.616552\pi\)
0.454311 + 0.890843i \(0.349885\pi\)
\(108\) 2.50000 7.69421i 0.240563 0.740376i
\(109\) −2.60081 + 8.00448i −0.249113 + 0.766690i 0.745820 + 0.666147i \(0.232058\pi\)
−0.994933 + 0.100543i \(0.967942\pi\)
\(110\) 1.12920 0.502754i 0.107665 0.0479357i
\(111\) 0.230909 0.0490813i 0.0219169 0.00465859i
\(112\) −5.44076 1.15647i −0.514103 0.109276i
\(113\) −1.69381 0.754131i −0.159340 0.0709427i 0.325517 0.945536i \(-0.394462\pi\)
−0.484857 + 0.874593i \(0.661128\pi\)
\(114\) −2.06773 + 2.29644i −0.193660 + 0.215082i
\(115\) 1.49750 14.2478i 0.139643 1.32861i
\(116\) 11.2812 + 8.19624i 1.04743 + 0.761002i
\(117\) −1.01478 9.65502i −0.0938168 0.892607i
\(118\) 2.92705 5.06980i 0.269457 0.466713i
\(119\) 0.354102 + 0.613323i 0.0324605 + 0.0562232i
\(120\) 4.73607 3.44095i 0.432342 0.314115i
\(121\) −6.96994 7.74090i −0.633631 0.703718i
\(122\) −1.32624 4.08174i −0.120072 0.369543i
\(123\) 6.47214 0.583573
\(124\) 0 0
\(125\) 8.23607 0.736656
\(126\) 1.14590 + 3.52671i 0.102085 + 0.314184i
\(127\) −6.84927 7.60688i −0.607774 0.675002i 0.358199 0.933645i \(-0.383391\pi\)
−0.965973 + 0.258644i \(0.916724\pi\)
\(128\) −9.20820 + 6.69015i −0.813898 + 0.591331i
\(129\) −2.30902 3.99933i −0.203298 0.352122i
\(130\) 3.92705 6.80185i 0.344425 0.596562i
\(131\) −0.00942533 0.0896760i −0.000823495 0.00783503i 0.994102 0.108445i \(-0.0345872\pi\)
−0.994926 + 0.100610i \(0.967921\pi\)
\(132\) 1.00000 + 0.726543i 0.0870388 + 0.0632374i
\(133\) −1.56793 + 14.9178i −0.135957 + 1.29354i
\(134\) 1.75181 1.94558i 0.151333 0.168072i
\(135\) 11.9585 + 5.32425i 1.02922 + 0.458239i
\(136\) 0.516329 + 0.109749i 0.0442748 + 0.00941091i
\(137\) −6.33070 + 1.34563i −0.540869 + 0.114965i −0.470242 0.882538i \(-0.655833\pi\)
−0.0706268 + 0.997503i \(0.522500\pi\)
\(138\) −3.08958 + 1.37557i −0.263002 + 0.117096i
\(139\) −1.80902 + 5.56758i −0.153439 + 0.472236i −0.997999 0.0632239i \(-0.979862\pi\)
0.844561 + 0.535460i \(0.179862\pi\)
\(140\) 3.92705 12.0862i 0.331896 1.02147i
\(141\) −3.08958 + 1.37557i −0.260190 + 0.115844i
\(142\) 0.0545103 0.0115865i 0.00457440 0.000972319i
\(143\) 3.62717 + 0.770979i 0.303319 + 0.0644725i
\(144\) −3.38761 1.50826i −0.282301 0.125689i
\(145\) −15.0971 + 16.7671i −1.25375 + 1.39243i
\(146\) 0.553143 5.26281i 0.0457785 0.435553i
\(147\) −1.61803 1.17557i −0.133453 0.0969594i
\(148\) −0.0399263 0.379874i −0.00328192 0.0312254i
\(149\) 8.51722 14.7523i 0.697758 1.20855i −0.271484 0.962443i \(-0.587514\pi\)
0.969242 0.246109i \(-0.0791522\pi\)
\(150\) 0.572949 + 0.992377i 0.0467811 + 0.0810272i
\(151\) −15.7812 + 11.4657i −1.28425 + 0.933064i −0.999673 0.0255888i \(-0.991854\pi\)
−0.284579 + 0.958652i \(0.591854\pi\)
\(152\) 7.48111 + 8.30861i 0.606798 + 0.673917i
\(153\) 0.145898 + 0.449028i 0.0117952 + 0.0363018i
\(154\) −1.41641 −0.114137
\(155\) 0 0
\(156\) 7.85410 0.628831
\(157\) 3.00000 + 9.23305i 0.239426 + 0.736878i 0.996503 + 0.0835524i \(0.0266266\pi\)
−0.757077 + 0.653325i \(0.773373\pi\)
\(158\) 0 0
\(159\) −10.2812 + 7.46969i −0.815348 + 0.592385i
\(160\) −7.35410 12.7377i −0.581393 1.00700i
\(161\) −8.20820 + 14.2170i −0.646897 + 1.12046i
\(162\) 0.0646021 + 0.614648i 0.00507562 + 0.0482913i
\(163\) 10.2812 + 7.46969i 0.805282 + 0.585072i 0.912459 0.409168i \(-0.134181\pi\)
−0.107177 + 0.994240i \(0.534181\pi\)
\(164\) 1.09464 10.4148i 0.0854767 0.813257i
\(165\) −1.33826 + 1.48629i −0.104183 + 0.115707i
\(166\) −2.30932 1.02817i −0.179238 0.0798019i
\(167\) −9.03424 1.92029i −0.699090 0.148596i −0.155362 0.987858i \(-0.549654\pi\)
−0.543728 + 0.839261i \(0.682988\pi\)
\(168\) −6.56161 + 1.39471i −0.506239 + 0.107605i
\(169\) 9.64915 4.29608i 0.742242 0.330467i
\(170\) −0.118034 + 0.363271i −0.00905279 + 0.0278616i
\(171\) −3.09017 + 9.51057i −0.236311 + 0.727291i
\(172\) −6.82614 + 3.03919i −0.520488 + 0.231736i
\(173\) −0.889948 + 0.189164i −0.0676615 + 0.0143819i −0.241618 0.970371i \(-0.577678\pi\)
0.173957 + 0.984753i \(0.444345\pi\)
\(174\) 5.20985 + 1.10739i 0.394957 + 0.0839508i
\(175\) 5.08142 + 2.26239i 0.384119 + 0.171021i
\(176\) 0.947762 1.05260i 0.0714402 0.0793424i
\(177\) −0.990108 + 9.42025i −0.0744211 + 0.708069i
\(178\) 3.19098 + 2.31838i 0.239174 + 0.173770i
\(179\) 2.06949 + 19.6899i 0.154681 + 1.47169i 0.746372 + 0.665529i \(0.231794\pi\)
−0.591691 + 0.806165i \(0.701539\pi\)
\(180\) 4.23607 7.33708i 0.315738 0.546874i
\(181\) 8.50000 + 14.7224i 0.631800 + 1.09431i 0.987184 + 0.159589i \(0.0510169\pi\)
−0.355383 + 0.934721i \(0.615650\pi\)
\(182\) −7.28115 + 5.29007i −0.539715 + 0.392126i
\(183\) 4.64662 + 5.16060i 0.343488 + 0.381483i
\(184\) 3.78115 + 11.6372i 0.278750 + 0.857905i
\(185\) 0.618034 0.0454388
\(186\) 0 0
\(187\) −0.180340 −0.0131878
\(188\) 1.69098 + 5.20431i 0.123328 + 0.379563i
\(189\) −10.0370 11.1472i −0.730081 0.810837i
\(190\) −6.54508 + 4.75528i −0.474830 + 0.344984i
\(191\) 8.04508 + 13.9345i 0.582122 + 1.00826i 0.995228 + 0.0975816i \(0.0311107\pi\)
−0.413106 + 0.910683i \(0.635556\pi\)
\(192\) 0.118034 0.204441i 0.00851837 0.0147542i
\(193\) 0.248983 + 2.36892i 0.0179222 + 0.170518i 0.999822 0.0188844i \(-0.00601146\pi\)
−0.981899 + 0.189403i \(0.939345\pi\)
\(194\) −2.64590 1.92236i −0.189964 0.138017i
\(195\) −1.32837 + 12.6386i −0.0951265 + 0.905068i
\(196\) −2.16535 + 2.40487i −0.154668 + 0.171776i
\(197\) −14.9971 6.67715i −1.06850 0.475728i −0.204318 0.978905i \(-0.565498\pi\)
−0.864183 + 0.503177i \(0.832164\pi\)
\(198\) −0.923637 0.196325i −0.0656400 0.0139522i
\(199\) −26.1246 + 5.55295i −1.85192 + 0.393638i −0.992965 0.118410i \(-0.962220\pi\)
−0.858957 + 0.512048i \(0.828887\pi\)
\(200\) 3.78747 1.68629i 0.267814 0.119239i
\(201\) −1.30902 + 4.02874i −0.0923309 + 0.284165i
\(202\) −0.909830 + 2.80017i −0.0640154 + 0.197019i
\(203\) 23.6189 10.5158i 1.65772 0.738065i
\(204\) −0.373619 + 0.0794152i −0.0261586 + 0.00556018i
\(205\) 16.5740 + 3.52291i 1.15758 + 0.246051i
\(206\) 0.0823743 + 0.0366754i 0.00573929 + 0.00255530i
\(207\) −7.32315 + 8.13318i −0.508994 + 0.565295i
\(208\) 0.940756 8.95070i 0.0652297 0.620619i
\(209\) −3.09017 2.24514i −0.213752 0.155300i
\(210\) −0.507392 4.82751i −0.0350134 0.333130i
\(211\) 4.00000 6.92820i 0.275371 0.476957i −0.694857 0.719148i \(-0.744533\pi\)
0.970229 + 0.242190i \(0.0778659\pi\)
\(212\) 10.2812 + 17.8075i 0.706112 + 1.22302i
\(213\) −0.0729490 + 0.0530006i −0.00499838 + 0.00363154i
\(214\) −0.450835 0.500703i −0.0308184 0.0342273i
\(215\) −3.73607 11.4984i −0.254798 0.784187i
\(216\) −11.1803 −0.760726
\(217\) 0 0
\(218\) 5.20163 0.352299
\(219\) 2.64590 + 8.14324i 0.178793 + 0.550269i
\(220\) 2.16535 + 2.40487i 0.145988 + 0.162136i
\(221\) −0.927051 + 0.673542i −0.0623602 + 0.0453073i
\(222\) −0.0729490 0.126351i −0.00489602 0.00848015i
\(223\) 0.354102 0.613323i 0.0237124 0.0410711i −0.853926 0.520395i \(-0.825785\pi\)
0.877638 + 0.479324i \(0.159118\pi\)
\(224\) 1.76173 + 16.7618i 0.117711 + 1.11994i
\(225\) 3.00000 + 2.17963i 0.200000 + 0.145309i
\(226\) −0.119779 + 1.13962i −0.00796758 + 0.0758064i
\(227\) −13.8795 + 15.4148i −0.921217 + 1.02312i 0.0784394 + 0.996919i \(0.475006\pi\)
−0.999657 + 0.0261967i \(0.991660\pi\)
\(228\) −7.39074 3.29057i −0.489464 0.217923i
\(229\) −7.07794 1.50446i −0.467724 0.0994177i −0.0319799 0.999489i \(-0.510181\pi\)
−0.435744 + 0.900071i \(0.643515\pi\)
\(230\) −8.66062 + 1.84087i −0.571064 + 0.121383i
\(231\) 2.09366 0.932157i 0.137753 0.0613315i
\(232\) 5.95492 18.3273i 0.390959 1.20325i
\(233\) 5.80902 17.8783i 0.380561 1.17125i −0.559088 0.829108i \(-0.688849\pi\)
0.939649 0.342139i \(-0.111151\pi\)
\(234\) −5.48127 + 2.44042i −0.358322 + 0.159535i
\(235\) −8.66062 + 1.84087i −0.564956 + 0.120085i
\(236\) 14.9913 + 3.18650i 0.975852 + 0.207424i
\(237\) 0 0
\(238\) 0.292875 0.325270i 0.0189842 0.0210841i
\(239\) −1.40240 + 13.3429i −0.0907135 + 0.863081i 0.850660 + 0.525716i \(0.176202\pi\)
−0.941374 + 0.337365i \(0.890464\pi\)
\(240\) 3.92705 + 2.85317i 0.253490 + 0.184171i
\(241\) −0.891405 8.48115i −0.0574204 0.546319i −0.984983 0.172651i \(-0.944767\pi\)
0.927563 0.373668i \(-0.121900\pi\)
\(242\) −3.21885 + 5.57521i −0.206915 + 0.358388i
\(243\) −8.00000 13.8564i −0.513200 0.888889i
\(244\) 9.09017 6.60440i 0.581938 0.422803i
\(245\) −3.50361 3.89116i −0.223838 0.248597i
\(246\) −1.23607 3.80423i −0.0788088 0.242549i
\(247\) −24.2705 −1.54430
\(248\) 0 0
\(249\) 4.09017 0.259204
\(250\) −1.57295 4.84104i −0.0994820 0.306174i
\(251\) −0.631841 0.701731i −0.0398815 0.0442929i 0.722874 0.690980i \(-0.242821\pi\)
−0.762755 + 0.646687i \(0.776154\pi\)
\(252\) −7.85410 + 5.70634i −0.494762 + 0.359466i
\(253\) −2.09017 3.62028i −0.131408 0.227605i
\(254\) −3.16312 + 5.47868i −0.198472 + 0.343763i
\(255\) −0.0646021 0.614648i −0.00404554 0.0384908i
\(256\) 5.30902 + 3.85723i 0.331814 + 0.241077i
\(257\) −0.148055 + 1.40865i −0.00923541 + 0.0878691i −0.998169 0.0604919i \(-0.980733\pi\)
0.988933 + 0.148361i \(0.0473997\pi\)
\(258\) −1.90977 + 2.12101i −0.118897 + 0.132048i
\(259\) −0.646976 0.288052i −0.0402012 0.0178987i
\(260\) 20.1130 + 4.27514i 1.24735 + 0.265133i
\(261\) 16.8594 3.58358i 1.04357 0.221818i
\(262\) −0.0509101 + 0.0226667i −0.00314524 + 0.00140035i
\(263\) 3.33688 10.2699i 0.205761 0.633267i −0.793920 0.608022i \(-0.791963\pi\)
0.999681 0.0252452i \(-0.00803665\pi\)
\(264\) 0.527864 1.62460i 0.0324878 0.0999871i
\(265\) −30.3941 + 13.5323i −1.86710 + 0.831285i
\(266\) 9.06793 1.92745i 0.555990 0.118179i
\(267\) −6.24250 1.32689i −0.382035 0.0812041i
\(268\) 6.26153 + 2.78781i 0.382484 + 0.170293i
\(269\) 0.924716 1.02700i 0.0563809 0.0626173i −0.714295 0.699845i \(-0.753252\pi\)
0.770675 + 0.637228i \(0.219919\pi\)
\(270\) 0.845653 8.04585i 0.0514648 0.489655i
\(271\) 7.73607 + 5.62058i 0.469933 + 0.341426i 0.797415 0.603431i \(-0.206200\pi\)
−0.327482 + 0.944857i \(0.606200\pi\)
\(272\) 0.0457515 + 0.435296i 0.00277409 + 0.0263937i
\(273\) 7.28115 12.6113i 0.440675 0.763272i
\(274\) 2.00000 + 3.46410i 0.120824 + 0.209274i
\(275\) −1.14590 + 0.832544i −0.0691003 + 0.0502043i
\(276\) −5.92455 6.57988i −0.356616 0.396062i
\(277\) −4.11803 12.6740i −0.247429 0.761507i −0.995228 0.0975818i \(-0.968889\pi\)
0.747799 0.663925i \(-0.231111\pi\)
\(278\) 3.61803 0.216995
\(279\) 0 0
\(280\) −17.5623 −1.04955
\(281\) 5.88197 + 18.1028i 0.350889 + 1.07992i 0.958355 + 0.285579i \(0.0921859\pi\)
−0.607466 + 0.794345i \(0.707814\pi\)
\(282\) 1.39860 + 1.55330i 0.0832852 + 0.0924976i
\(283\) −5.30902 + 3.85723i −0.315588 + 0.229288i −0.734291 0.678835i \(-0.762485\pi\)
0.418702 + 0.908124i \(0.362485\pi\)
\(284\) 0.0729490 + 0.126351i 0.00432873 + 0.00749758i
\(285\) 6.54508 11.3364i 0.387697 0.671512i
\(286\) −0.239558 2.27924i −0.0141654 0.134774i
\(287\) −15.7082 11.4127i −0.927226 0.673669i
\(288\) −1.17449 + 11.1745i −0.0692074 + 0.658465i
\(289\) −11.3379 + 12.5920i −0.666937 + 0.740709i
\(290\) 12.7387 + 5.67165i 0.748044 + 0.333051i
\(291\) 5.17616 + 1.10023i 0.303432 + 0.0644964i
\(292\) 13.5514 2.88043i 0.793033 0.168564i
\(293\) −7.52402 + 3.34991i −0.439558 + 0.195704i −0.614570 0.788862i \(-0.710670\pi\)
0.175012 + 0.984566i \(0.444004\pi\)
\(294\) −0.381966 + 1.17557i −0.0222767 + 0.0685607i
\(295\) −7.66312 + 23.5847i −0.446164 + 1.37315i
\(296\) −0.482228 + 0.214702i −0.0280289 + 0.0124793i
\(297\) 3.73619 0.794152i 0.216796 0.0460814i
\(298\) −10.2978 2.18887i −0.596536 0.126798i
\(299\) −24.2659 10.8039i −1.40333 0.624804i
\(300\) −2.00739 + 2.22943i −0.115897 + 0.128716i
\(301\) −1.44815 + 13.7782i −0.0834699 + 0.794163i
\(302\) 9.75329 + 7.08618i 0.561239 + 0.407764i
\(303\) −0.497966 4.73783i −0.0286074 0.272181i
\(304\) −4.63525 + 8.02850i −0.265850 + 0.460466i
\(305\) 9.09017 + 15.7446i 0.520502 + 0.901535i
\(306\) 0.236068 0.171513i 0.0134951 0.00980477i
\(307\) 4.07512 + 4.52588i 0.232579 + 0.258306i 0.848126 0.529795i \(-0.177731\pi\)
−0.615546 + 0.788101i \(0.711065\pi\)
\(308\) −1.14590 3.52671i −0.0652936 0.200953i
\(309\) −0.145898 −0.00829985
\(310\) 0 0
\(311\) 16.4721 0.934049 0.467025 0.884244i \(-0.345326\pi\)
0.467025 + 0.884244i \(0.345326\pi\)
\(312\) −3.35410 10.3229i −0.189889 0.584417i
\(313\) −0.827091 0.918578i −0.0467499 0.0519211i 0.719316 0.694683i \(-0.244455\pi\)
−0.766066 + 0.642762i \(0.777789\pi\)
\(314\) 4.85410 3.52671i 0.273933 0.199024i
\(315\) −7.85410 13.6037i −0.442529 0.766482i
\(316\) 0 0
\(317\) −2.70609 25.7467i −0.151989 1.44608i −0.758847 0.651269i \(-0.774237\pi\)
0.606857 0.794811i \(-0.292430\pi\)
\(318\) 6.35410 + 4.61653i 0.356320 + 0.258882i
\(319\) −0.688173 + 6.54753i −0.0385303 + 0.366591i
\(320\) 0.413545 0.459289i 0.0231179 0.0256750i
\(321\) 0.995920 + 0.443412i 0.0555868 + 0.0247488i
\(322\) 9.92419 + 2.10945i 0.553053 + 0.117555i
\(323\) 1.15455 0.245406i 0.0642407 0.0136548i
\(324\) −1.47815 + 0.658114i −0.0821193 + 0.0365619i
\(325\) −2.78115 + 8.55951i −0.154271 + 0.474796i
\(326\) 2.42705 7.46969i 0.134422 0.413708i
\(327\) −7.68877 + 3.42326i −0.425190 + 0.189307i
\(328\) −14.1559 + 3.00893i −0.781628 + 0.166140i
\(329\) 9.92419 + 2.10945i 0.547138 + 0.116298i
\(330\) 1.12920 + 0.502754i 0.0621607 + 0.0276757i
\(331\) −7.54144 + 8.37562i −0.414515 + 0.460366i −0.913855 0.406040i \(-0.866909\pi\)
0.499340 + 0.866406i \(0.333576\pi\)
\(332\) 0.691773 6.58178i 0.0379660 0.361222i
\(333\) −0.381966 0.277515i −0.0209316 0.0152077i
\(334\) 0.596670 + 5.67693i 0.0326483 + 0.310628i
\(335\) −5.54508 + 9.60437i −0.302960 + 0.524743i
\(336\) −2.78115 4.81710i −0.151724 0.262794i
\(337\) 15.3541 11.1554i 0.836391 0.607674i −0.0849690 0.996384i \(-0.527079\pi\)
0.921360 + 0.388710i \(0.127079\pi\)
\(338\) −4.36799 4.85115i −0.237588 0.263868i
\(339\) −0.572949 1.76336i −0.0311183 0.0957723i
\(340\) −1.00000 −0.0542326
\(341\) 0 0
\(342\) 6.18034 0.334195
\(343\) −4.63525 14.2658i −0.250280 0.770283i
\(344\) 6.90960 + 7.67389i 0.372541 + 0.413748i
\(345\) 11.5902 8.42075i 0.623994 0.453358i
\(346\) 0.281153 + 0.486971i 0.0151149 + 0.0261797i
\(347\) 4.06231 7.03612i 0.218076 0.377719i −0.736144 0.676825i \(-0.763355\pi\)
0.954220 + 0.299107i \(0.0966886\pi\)
\(348\) 1.45757 + 13.8679i 0.0781341 + 0.743397i
\(349\) 13.5172 + 9.82084i 0.723560 + 0.525697i 0.887520 0.460770i \(-0.152427\pi\)
−0.163959 + 0.986467i \(0.552427\pi\)
\(350\) 0.359337 3.41886i 0.0192074 0.182746i
\(351\) 16.2401 18.0365i 0.866835 0.962717i
\(352\) −3.92075 1.74563i −0.208977 0.0930424i
\(353\) −31.6743 6.73259i −1.68586 0.358340i −0.737450 0.675401i \(-0.763970\pi\)
−0.948405 + 0.317062i \(0.897304\pi\)
\(354\) 5.72618 1.21714i 0.304343 0.0646901i
\(355\) −0.215659 + 0.0960175i −0.0114460 + 0.00509608i
\(356\) −3.19098 + 9.82084i −0.169122 + 0.520503i
\(357\) −0.218847 + 0.673542i −0.0115826 + 0.0356476i
\(358\) 11.1782 4.97686i 0.590786 0.263035i
\(359\) 24.7728 5.26562i 1.30746 0.277909i 0.499072 0.866561i \(-0.333674\pi\)
0.808387 + 0.588652i \(0.200341\pi\)
\(360\) −11.4524 2.43427i −0.603592 0.128297i
\(361\) 5.48127 + 2.44042i 0.288488 + 0.128443i
\(362\) 7.03027 7.80791i 0.369503 0.410375i
\(363\) 1.08881 10.3593i 0.0571478 0.543725i
\(364\) −19.0623 13.8496i −0.999136 0.725915i
\(365\) 2.34315 + 22.2936i 0.122646 + 1.16690i
\(366\) 2.14590 3.71680i 0.112168 0.194280i
\(367\) −18.1353 31.4112i −0.946653 1.63965i −0.752408 0.658697i \(-0.771108\pi\)
−0.194245 0.980953i \(-0.562226\pi\)
\(368\) −8.20820 + 5.96361i −0.427882 + 0.310875i
\(369\) −8.66141 9.61947i −0.450895 0.500770i
\(370\) −0.118034 0.363271i −0.00613629 0.0188856i
\(371\) 38.1246 1.97933
\(372\) 0 0
\(373\) −0.347524 −0.0179941 −0.00899706 0.999960i \(-0.502864\pi\)
−0.00899706 + 0.999960i \(0.502864\pi\)
\(374\) 0.0344419 + 0.106001i 0.00178095 + 0.00548119i
\(375\) 5.51101 + 6.12059i 0.284587 + 0.316066i
\(376\) 6.11803 4.44501i 0.315514 0.229234i
\(377\) 20.9164 + 36.2283i 1.07725 + 1.86585i
\(378\) −4.63525 + 8.02850i −0.238412 + 0.412941i
\(379\) 1.92504 + 18.3155i 0.0988826 + 0.940805i 0.925681 + 0.378306i \(0.123493\pi\)
−0.826798 + 0.562499i \(0.809840\pi\)
\(380\) −17.1353 12.4495i −0.879020 0.638645i
\(381\) 1.06996 10.1800i 0.0548157 0.521537i
\(382\) 6.65402 7.39003i 0.340449 0.378107i
\(383\) 15.3970 + 6.85518i 0.786749 + 0.350283i 0.760472 0.649371i \(-0.224968\pi\)
0.0262778 + 0.999655i \(0.491635\pi\)
\(384\) −11.1332 2.36644i −0.568141 0.120762i
\(385\) 5.86889 1.24747i 0.299106 0.0635770i
\(386\) 1.34486 0.598772i 0.0684517 0.0304767i
\(387\) −2.85410 + 8.78402i −0.145082 + 0.446517i
\(388\) 2.64590 8.14324i 0.134325 0.413410i
\(389\) 26.5557 11.8234i 1.34643 0.599469i 0.398271 0.917268i \(-0.369610\pi\)
0.948158 + 0.317798i \(0.102944\pi\)
\(390\) 7.68247 1.63296i 0.389017 0.0826881i
\(391\) 1.26357 + 0.268580i 0.0639013 + 0.0135826i
\(392\) 4.08550 + 1.81898i 0.206349 + 0.0918724i
\(393\) 0.0603355 0.0670093i 0.00304352 0.00338017i
\(394\) −1.06054 + 10.0903i −0.0534290 + 0.508343i
\(395\) 0 0
\(396\) −0.258409 2.45859i −0.0129855 0.123549i
\(397\) −8.14590 + 14.1091i −0.408831 + 0.708116i −0.994759 0.102247i \(-0.967397\pi\)
0.585928 + 0.810363i \(0.300730\pi\)
\(398\) 8.25329 + 14.2951i 0.413700 + 0.716549i
\(399\) −12.1353 + 8.81678i −0.607523 + 0.441391i
\(400\) 2.30027 + 2.55470i 0.115013 + 0.127735i
\(401\) 9.21885 + 28.3727i 0.460367 + 1.41686i 0.864717 + 0.502260i \(0.167498\pi\)
−0.404349 + 0.914605i \(0.632502\pi\)
\(402\) 2.61803 0.130576
\(403\) 0 0
\(404\) −7.70820 −0.383497
\(405\) −0.809017 2.48990i −0.0402004 0.123724i
\(406\) −10.6918 11.8745i −0.530627 0.589321i
\(407\) 0.145898 0.106001i 0.00723190 0.00525428i
\(408\) 0.263932 + 0.457144i 0.0130666 + 0.0226320i
\(409\) −3.09017 + 5.35233i −0.152799 + 0.264656i −0.932255 0.361801i \(-0.882162\pi\)
0.779456 + 0.626457i \(0.215495\pi\)
\(410\) −1.09464 10.4148i −0.0540602 0.514349i
\(411\) −5.23607 3.80423i −0.258276 0.187649i
\(412\) −0.0246758 + 0.234775i −0.00121569 + 0.0115665i
\(413\) 19.0143 21.1175i 0.935632 1.03912i
\(414\) 6.17916 + 2.75114i 0.303689 + 0.135211i
\(415\) 10.4742 + 2.22636i 0.514158 + 0.109288i
\(416\) −26.6746 + 5.66986i −1.30783 + 0.277988i
\(417\) −5.34799 + 2.38108i −0.261892 + 0.116602i
\(418\) −0.729490 + 2.24514i −0.0356805 + 0.109813i
\(419\) 1.38197 4.25325i 0.0675135 0.207785i −0.911608 0.411060i \(-0.865159\pi\)
0.979122 + 0.203275i \(0.0651586\pi\)
\(420\) 11.6095 5.16889i 0.566487 0.252216i
\(421\) −14.4413 + 3.06959i −0.703826 + 0.149603i −0.545903 0.837849i \(-0.683813\pi\)
−0.157923 + 0.987451i \(0.550480\pi\)
\(422\) −4.83623 1.02797i −0.235424 0.0500409i
\(423\) 6.17916 + 2.75114i 0.300441 + 0.133765i
\(424\) 19.0143 21.1175i 0.923415 1.02556i
\(425\) 0.0457515 0.435296i 0.00221927 0.0211150i
\(426\) 0.0450850 + 0.0327561i 0.00218437 + 0.00158704i
\(427\) −2.17762 20.7187i −0.105383 1.00265i
\(428\) 0.881966 1.52761i 0.0426314 0.0738398i
\(429\) 1.85410 + 3.21140i 0.0895169 + 0.155048i
\(430\) −6.04508 + 4.39201i −0.291520 + 0.211802i
\(431\) 19.5627 + 21.7266i 0.942304 + 1.04654i 0.998841 + 0.0481345i \(0.0153276\pi\)
−0.0565365 + 0.998401i \(0.518006\pi\)
\(432\) −2.86475 8.81678i −0.137830 0.424197i
\(433\) −0.583592 −0.0280456 −0.0140228 0.999902i \(-0.504464\pi\)
−0.0140228 + 0.999902i \(0.504464\pi\)
\(434\) 0 0
\(435\) −22.5623 −1.08178
\(436\) 4.20820 + 12.9515i 0.201536 + 0.620265i
\(437\) 18.3079 + 20.3329i 0.875784 + 0.972657i
\(438\) 4.28115 3.11044i 0.204561 0.148623i
\(439\) −20.9164 36.2283i −0.998286 1.72908i −0.549831 0.835276i \(-0.685308\pi\)
−0.448455 0.893805i \(-0.648026\pi\)
\(440\) 2.23607 3.87298i 0.106600 0.184637i
\(441\) 0.418114 + 3.97809i 0.0199102 + 0.189433i
\(442\) 0.572949 + 0.416272i 0.0272524 + 0.0198000i
\(443\) 4.29869 40.8993i 0.204237 1.94319i −0.110205 0.993909i \(-0.535151\pi\)
0.314442 0.949277i \(-0.398183\pi\)
\(444\) 0.255585 0.283856i 0.0121295 0.0134712i
\(445\) −15.2637 6.79584i −0.723569 0.322154i
\(446\) −0.428129 0.0910017i −0.0202725 0.00430906i
\(447\) 16.6622 3.54166i 0.788095 0.167515i
\(448\) −0.646976 + 0.288052i −0.0305668 + 0.0136092i
\(449\) −7.43769 + 22.8909i −0.351006 + 1.08029i 0.607283 + 0.794486i \(0.292260\pi\)
−0.958289 + 0.285801i \(0.907740\pi\)
\(450\) 0.708204 2.17963i 0.0333851 0.102749i
\(451\) 4.51682 2.01102i 0.212689 0.0946951i
\(452\) −2.93444 + 0.623735i −0.138025 + 0.0293380i
\(453\) −19.0803 4.05565i −0.896471 0.190551i
\(454\) 11.7113 + 5.21423i 0.549641 + 0.244716i
\(455\) 25.5103 28.3321i 1.19594 1.32823i
\(456\) −1.16866 + 11.1191i −0.0547277 + 0.520699i
\(457\) −12.7361 9.25330i −0.595768 0.432851i 0.248606 0.968605i \(-0.420028\pi\)
−0.844374 + 0.535754i \(0.820028\pi\)
\(458\) 0.467465 + 4.44764i 0.0218432 + 0.207824i
\(459\) −0.590170 + 1.02220i −0.0275468 + 0.0477124i
\(460\) −11.5902 20.0748i −0.540394 0.935991i
\(461\) 8.69098 6.31437i 0.404779 0.294089i −0.366705 0.930337i \(-0.619514\pi\)
0.771485 + 0.636248i \(0.219514\pi\)
\(462\) −0.947762 1.05260i −0.0440939 0.0489712i
\(463\) 9.61803 + 29.6013i 0.446988 + 1.37569i 0.880289 + 0.474438i \(0.157349\pi\)
−0.433301 + 0.901249i \(0.642651\pi\)
\(464\) 15.9787 0.741793
\(465\) 0 0
\(466\) −11.6180 −0.538195
\(467\) −10.1287 31.1729i −0.468699 1.44251i −0.854270 0.519830i \(-0.825995\pi\)
0.385571 0.922678i \(-0.374005\pi\)
\(468\) −10.5108 11.6735i −0.485864 0.539606i
\(469\) 10.2812 7.46969i 0.474740 0.344918i
\(470\) 2.73607 + 4.73901i 0.126205 + 0.218594i
\(471\) −4.85410 + 8.40755i −0.223665 + 0.387400i
\(472\) −2.21395 21.0643i −0.101905 0.969564i
\(473\) −2.85410 2.07363i −0.131232 0.0953454i
\(474\) 0 0
\(475\) 6.20318 6.88933i 0.284622 0.316104i
\(476\) 1.04683 + 0.466079i 0.0479814 + 0.0213627i
\(477\) 24.8610 + 5.28437i 1.13831 + 0.241955i
\(478\) 8.11060 1.72396i 0.370970 0.0788522i
\(479\) −8.17100 + 3.63796i −0.373342 + 0.166223i −0.584826 0.811159i \(-0.698837\pi\)
0.211483 + 0.977382i \(0.432171\pi\)
\(480\) 4.54508 13.9883i 0.207454 0.638477i
\(481\) 0.354102 1.08981i 0.0161457 0.0496912i
\(482\) −4.81485 + 2.14371i −0.219310 + 0.0976433i
\(483\) −16.0577 + 3.41316i −0.730649 + 0.155304i
\(484\) −16.4858 3.50416i −0.749355 0.159280i
\(485\) 12.6564 + 5.63497i 0.574695 + 0.255871i
\(486\) −6.61673 + 7.34862i −0.300141 + 0.333340i
\(487\) 2.39610 22.7974i 0.108578 1.03305i −0.795579 0.605849i \(-0.792833\pi\)
0.904157 0.427200i \(-0.140500\pi\)
\(488\) −12.5623 9.12705i −0.568669 0.413162i
\(489\) 1.32837 + 12.6386i 0.0600709 + 0.571537i
\(490\) −1.61803 + 2.80252i −0.0730953 + 0.126605i
\(491\) −13.7984 23.8995i −0.622712 1.07857i −0.988979 0.148059i \(-0.952698\pi\)
0.366267 0.930510i \(-0.380636\pi\)
\(492\) 8.47214 6.15537i 0.381953 0.277505i
\(493\) −1.36131 1.51188i −0.0613102 0.0680919i
\(494\) 4.63525 + 14.2658i 0.208550 + 0.641851i
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) 0.270510 0.0121340
\(498\) −0.781153 2.40414i −0.0350043 0.107732i
\(499\) −2.77415 3.08100i −0.124188 0.137925i 0.677844 0.735206i \(-0.262914\pi\)
−0.802032 + 0.597281i \(0.796248\pi\)
\(500\) 10.7812 7.83297i 0.482148 0.350301i
\(501\) −4.61803 7.99867i −0.206319 0.357354i
\(502\) −0.291796 + 0.505406i −0.0130235 + 0.0225574i
\(503\) −1.37412 13.0739i −0.0612690 0.582936i −0.981487 0.191529i \(-0.938655\pi\)
0.920218 0.391406i \(-0.128011\pi\)
\(504\) 10.8541 + 7.88597i 0.483480 + 0.351269i
\(505\) 1.30369 12.4038i 0.0580136 0.551962i
\(506\) −1.72876 + 1.91998i −0.0768528 + 0.0853537i
\(507\) 9.64915 + 4.29608i 0.428534 + 0.190795i
\(508\) −16.2004 3.44350i −0.718776 0.152780i
\(509\) −1.86810 + 0.397076i −0.0828019 + 0.0176001i −0.249126 0.968471i \(-0.580143\pi\)
0.166324 + 0.986071i \(0.446810\pi\)
\(510\) −0.348943 + 0.155360i −0.0154515 + 0.00687944i
\(511\) 7.93769 24.4297i 0.351143 1.08071i
\(512\) −5.78115 + 17.7926i −0.255493 + 0.786327i
\(513\) −22.8386 + 10.1684i −1.00835 + 0.448947i
\(514\) 0.856259 0.182003i 0.0377680 0.00802783i
\(515\) −0.373619 0.0794152i −0.0164636 0.00349945i
\(516\) −6.82614 3.03919i −0.300504 0.133793i
\(517\) −1.72876 + 1.91998i −0.0760308 + 0.0844408i
\(518\) −0.0457515 + 0.435296i −0.00201021 + 0.0191258i
\(519\) −0.736068 0.534785i −0.0323098 0.0234744i
\(520\) −2.97032 28.2607i −0.130257 1.23932i
\(521\) −15.5344 + 26.9064i −0.680576 + 1.17879i 0.294229 + 0.955735i \(0.404937\pi\)
−0.974805 + 0.223058i \(0.928396\pi\)
\(522\) −5.32624 9.22531i −0.233123 0.403781i
\(523\) 27.6074 20.0579i 1.20719 0.877073i 0.212215 0.977223i \(-0.431932\pi\)
0.994972 + 0.100150i \(0.0319324\pi\)
\(524\) −0.0976248 0.108423i −0.00426476 0.00473650i
\(525\) 1.71885 + 5.29007i 0.0750166 + 0.230877i
\(526\) −6.67376 −0.290990
\(527\) 0 0
\(528\) 1.41641 0.0616412
\(529\) 2.14590 + 6.60440i 0.0932999 + 0.287148i
\(530\) 13.7589 + 15.2808i 0.597647 + 0.663754i
\(531\) 15.3262 11.1352i 0.665102 0.483225i
\(532\) 12.1353 + 21.0189i 0.526130 + 0.911284i
\(533\) 15.7082 27.2074i 0.680398 1.17848i
\(534\) 0.412289 + 3.92266i 0.0178415 + 0.169750i
\(535\) 2.30902 + 1.67760i 0.0998275 + 0.0725289i
\(536\) 0.990108 9.42025i 0.0427661 0.406893i
\(537\) −13.2477 + 14.7131i −0.571680 + 0.634915i
\(538\) −0.780261 0.347395i −0.0336394 0.0149772i
\(539\) −1.49448 0.317661i −0.0643717 0.0136826i
\(540\) 20.7175 4.40364i 0.891539 0.189503i
\(541\) 20.0980 8.94821i 0.864081 0.384713i 0.0736639 0.997283i \(-0.476531\pi\)
0.790417 + 0.612570i \(0.209864\pi\)
\(542\) 1.82624 5.62058i 0.0784436 0.241425i
\(543\) −5.25329 + 16.1680i −0.225440 + 0.693834i
\(544\) 1.21158 0.539430i 0.0519460 0.0231279i
\(545\) −21.5529 + 4.58122i −0.923226 + 0.196238i
\(546\) −8.80333 1.87121i −0.376748 0.0800802i
\(547\) −21.6585 9.64300i −0.926052 0.412305i −0.112404 0.993663i \(-0.535855\pi\)
−0.813648 + 0.581358i \(0.802522\pi\)
\(548\) −7.00723 + 7.78231i −0.299334 + 0.332444i
\(549\) 1.45175 13.8125i 0.0619591 0.589501i
\(550\) 0.708204 + 0.514540i 0.0301979 + 0.0219401i
\(551\) −4.50415 42.8541i −0.191883 1.82565i
\(552\) −6.11803 + 10.5967i −0.260401 + 0.451027i
\(553\) 0 0
\(554\) −6.66312 + 4.84104i −0.283089 + 0.205676i
\(555\) 0.413545 + 0.459289i 0.0175540 + 0.0194957i
\(556\) 2.92705 + 9.00854i 0.124135 + 0.382047i
\(557\) −35.8885 −1.52065 −0.760323 0.649545i \(-0.774959\pi\)
−0.760323 + 0.649545i \(0.774959\pi\)
\(558\) 0 0
\(559\) −22.4164 −0.948113
\(560\) −4.50000 13.8496i −0.190160 0.585251i
\(561\) −0.120671 0.134019i −0.00509473 0.00565827i
\(562\) 9.51722 6.91467i 0.401460 0.291678i
\(563\) 4.28115 + 7.41517i 0.180429 + 0.312512i 0.942027 0.335538i \(-0.108918\pi\)
−0.761598 + 0.648050i \(0.775585\pi\)
\(564\) −2.73607 + 4.73901i −0.115209 + 0.199548i
\(565\) −0.507392 4.82751i −0.0213461 0.203095i
\(566\) 3.28115 + 2.38390i 0.137917 + 0.100203i
\(567\) −0.313585 + 2.98357i −0.0131693 + 0.125298i
\(568\) 0.134914 0.149837i 0.00566087 0.00628704i
\(569\) −14.1854 6.31575i −0.594683 0.264770i 0.0872476 0.996187i \(-0.472193\pi\)
−0.681931 + 0.731417i \(0.738860\pi\)
\(570\) −7.91338 1.68204i −0.331455 0.0704529i
\(571\) 6.84703 1.45538i 0.286539 0.0609058i −0.0623997 0.998051i \(-0.519875\pi\)
0.348939 + 0.937145i \(0.386542\pi\)
\(572\) 5.48127 2.44042i 0.229184 0.102039i
\(573\) −4.97214 + 15.3027i −0.207714 + 0.639278i
\(574\) −3.70820 + 11.4127i −0.154777 + 0.476356i
\(575\) 9.26874 4.12671i 0.386533 0.172096i
\(576\) −0.461819 + 0.0981626i −0.0192424 + 0.00409011i
\(577\) −38.1269 8.10413i −1.58725 0.337379i −0.672086 0.740473i \(-0.734602\pi\)
−0.915159 + 0.403093i \(0.867935\pi\)
\(578\) 9.56677 + 4.25940i 0.397925 + 0.177168i
\(579\) −1.59385 + 1.77015i −0.0662380 + 0.0735647i
\(580\) −3.81598 + 36.3066i −0.158450 + 1.50755i
\(581\) −9.92705 7.21242i −0.411843 0.299222i
\(582\) −0.341861 3.25259i −0.0141706 0.134824i
\(583\) −4.85410 + 8.40755i −0.201036 + 0.348205i
\(584\) −9.57295 16.5808i −0.396131 0.686120i
\(585\) 20.5623 14.9394i 0.850147 0.617668i
\(586\) 3.40599 + 3.78273i 0.140700 + 0.156263i
\(587\) −11.1287 34.2505i −0.459330 1.41367i −0.865976 0.500086i \(-0.833302\pi\)
0.406646 0.913586i \(-0.366698\pi\)
\(588\) −3.23607 −0.133453
\(589\) 0 0
\(590\) 15.3262 0.630971
\(591\) −5.07295 15.6129i −0.208673 0.642230i
\(592\) −0.292875 0.325270i −0.0120371 0.0133685i
\(593\) −4.94427 + 3.59222i −0.203037 + 0.147515i −0.684658 0.728865i \(-0.740048\pi\)
0.481621 + 0.876380i \(0.340048\pi\)
\(594\) −1.18034 2.04441i −0.0484299 0.0838831i
\(595\) −0.927051 + 1.60570i −0.0380054 + 0.0658273i
\(596\) −2.88105 27.4113i −0.118012 1.12281i
\(597\) −21.6074 15.6987i −0.884332 0.642505i
\(598\) −1.71598 + 16.3265i −0.0701717 + 0.667639i
\(599\) 19.9390 22.1445i 0.814686 0.904800i −0.182232 0.983256i \(-0.558332\pi\)
0.996918 + 0.0784555i \(0.0249989\pi\)
\(600\) 3.78747 + 1.68629i 0.154623 + 0.0688424i
\(601\) 21.5192 + 4.57406i 0.877788 + 0.186580i 0.624701 0.780864i \(-0.285221\pi\)
0.253087 + 0.967443i \(0.418554\pi\)
\(602\) 8.37520 1.78020i 0.341348 0.0725557i
\(603\) 7.73968 3.44593i 0.315184 0.140329i
\(604\) −9.75329 + 30.0175i −0.396856 + 1.22140i
\(605\) 8.42705 25.9358i 0.342608 1.05444i
\(606\) −2.68973 + 1.19754i −0.109263 + 0.0486469i
\(607\) 24.8610 5.28437i 1.00908 0.214486i 0.326420 0.945225i \(-0.394158\pi\)
0.682657 + 0.730739i \(0.260824\pi\)
\(608\) 27.4763 + 5.84027i 1.11431 + 0.236854i
\(609\) 23.6189 + 10.5158i 0.957086 + 0.426122i
\(610\) 7.51840 8.35003i 0.304411 0.338083i
\(611\) −1.71598 + 16.3265i −0.0694212 + 0.660499i
\(612\) 0.618034 + 0.449028i 0.0249825 + 0.0181509i
\(613\) 2.61904 + 24.9185i 0.105782 + 1.00645i 0.910702 + 0.413064i \(0.135541\pi\)
−0.804920 + 0.593383i \(0.797792\pi\)
\(614\) 1.88197 3.25966i 0.0759500 0.131549i
\(615\) 8.47214 + 14.6742i 0.341629 + 0.591720i
\(616\) −4.14590 + 3.01217i −0.167043 + 0.121364i
\(617\) −9.52579 10.5795i −0.383494 0.425913i 0.520232 0.854025i \(-0.325846\pi\)
−0.903726 + 0.428112i \(0.859179\pi\)
\(618\) 0.0278640 + 0.0857567i 0.00112086 + 0.00344964i
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) −27.3607 −1.09795
\(622\) −3.14590 9.68208i −0.126139 0.388216i
\(623\) 12.8111 + 14.2282i 0.513266 + 0.570040i
\(624\) 7.28115 5.29007i 0.291479 0.211772i
\(625\) 15.4164 + 26.7020i 0.616656 + 1.06808i
\(626\) −0.381966 + 0.661585i −0.0152664 + 0.0264422i
\(627\) −0.399263 3.79874i −0.0159450 0.151707i
\(628\) 12.7082 + 9.23305i 0.507113 + 0.368439i
\(629\) −0.00582517 + 0.0554228i −0.000232265 + 0.00220985i
\(630\) −6.49606 + 7.21460i −0.258809 + 0.287437i
\(631\) 7.97479 + 3.55060i 0.317471 + 0.141347i 0.559285 0.828975i \(-0.311076\pi\)
−0.241814 + 0.970323i \(0.577742\pi\)
\(632\) 0 0
\(633\) 7.82518 1.66329i 0.311023 0.0661100i
\(634\) −14.6167 + 6.50779i −0.580504 + 0.258457i
\(635\) 8.28115 25.4868i 0.328628 1.01141i
\(636\) −6.35410 + 19.5559i −0.251957 + 0.775442i
\(637\) −8.86889 + 3.94868i −0.351398 + 0.156452i
\(638\) 3.97997 0.845968i 0.157568 0.0334922i
\(639\) 0.176399 + 0.0374948i 0.00697824 + 0.00148327i
\(640\) −27.2222 12.1201i −1.07605 0.479089i
\(641\) 27.4947 30.5359i 1.08597 1.20610i 0.108711 0.994073i \(-0.465328\pi\)
0.977264 0.212024i \(-0.0680055\pi\)
\(642\) 0.0704273 0.670071i 0.00277954 0.0264456i
\(643\) 6.59017 + 4.78804i 0.259891 + 0.188822i 0.710099 0.704102i \(-0.248650\pi\)
−0.450208 + 0.892924i \(0.648650\pi\)
\(644\) 2.77652 + 26.4168i 0.109410 + 1.04097i
\(645\) 6.04508 10.4704i 0.238025 0.412271i
\(646\) −0.364745 0.631757i −0.0143507 0.0248561i
\(647\) −24.1803 + 17.5680i −0.950627 + 0.690671i −0.950955 0.309329i \(-0.899896\pi\)
0.000327889 1.00000i \(0.499896\pi\)
\(648\) 1.49622 + 1.66172i 0.0587771 + 0.0652786i
\(649\) 2.23607 + 6.88191i 0.0877733 + 0.270139i
\(650\) 5.56231 0.218172
\(651\) 0 0
\(652\) 20.5623 0.805282
\(653\) 12.2533 + 37.7117i 0.479508 + 1.47577i 0.839780 + 0.542927i \(0.182684\pi\)
−0.360272 + 0.932847i \(0.617316\pi\)
\(654\) 3.48057 + 3.86556i 0.136101 + 0.151155i
\(655\) 0.190983 0.138757i 0.00746232 0.00542170i
\(656\) −6.00000 10.3923i −0.234261 0.405751i
\(657\) 8.56231 14.8303i 0.334047 0.578587i
\(658\) −0.655447 6.23616i −0.0255520 0.243111i
\(659\) −18.3541 13.3350i −0.714974 0.519459i 0.169800 0.985478i \(-0.445688\pi\)
−0.884775 + 0.466019i \(0.845688\pi\)
\(660\) −0.338261 + 3.21834i −0.0131668 + 0.125274i
\(661\) −11.1196 + 12.3496i −0.432504 + 0.480344i −0.919517 0.393051i \(-0.871420\pi\)
0.487013 + 0.873395i \(0.338086\pi\)
\(662\) 6.36335 + 2.83315i 0.247319 + 0.110113i
\(663\) −1.12086 0.238246i −0.0435305 0.00925269i
\(664\) −8.94604 + 1.90154i −0.347174 + 0.0737940i
\(665\) −35.8754 + 15.9728i −1.39119 + 0.619397i
\(666\) −0.0901699 + 0.277515i −0.00349401 + 0.0107535i
\(667\) 14.5729 44.8509i 0.564267 1.73663i
\(668\) −13.6523 + 6.07838i −0.528222 + 0.235180i
\(669\) 0.692728 0.147244i 0.0267824 0.00569278i
\(670\) 6.70432 + 1.42505i 0.259011 + 0.0550544i
\(671\) 4.84631 + 2.15772i 0.187090 + 0.0832978i
\(672\) −11.2776 + 12.5250i −0.435043 + 0.483164i
\(673\) −0.461640 + 4.39221i −0.0177949 + 0.169307i −0.999810 0.0194954i \(-0.993794\pi\)
0.982015 + 0.188803i \(0.0604607\pi\)
\(674\) −9.48936 6.89442i −0.365516 0.265563i
\(675\) 0.969032 + 9.21973i 0.0372981 + 0.354867i
\(676\) 8.54508 14.8005i 0.328657 0.569251i
\(677\) 14.3262 + 24.8138i 0.550602 + 0.953671i 0.998231 + 0.0594514i \(0.0189351\pi\)
−0.447629 + 0.894219i \(0.647732\pi\)
\(678\) −0.927051 + 0.673542i −0.0356032 + 0.0258672i
\(679\) −10.6227 11.7977i −0.407662 0.452755i
\(680\) 0.427051 + 1.31433i 0.0163767 + 0.0504022i
\(681\) −20.7426 −0.794860
\(682\) 0 0
\(683\) 10.0557 0.384772 0.192386 0.981319i \(-0.438377\pi\)
0.192386 + 0.981319i \(0.438377\pi\)
\(684\) 5.00000 + 15.3884i 0.191180 + 0.588391i
\(685\) −11.3379 12.5920i −0.433200 0.481117i
\(686\) −7.50000 + 5.44907i −0.286351 + 0.208046i
\(687\) −3.61803 6.26662i −0.138037 0.239086i
\(688\) −4.28115 + 7.41517i −0.163217 + 0.282701i
\(689\) 6.44804 + 61.3490i 0.245651 + 2.33721i
\(690\) −7.16312 5.20431i −0.272695 0.198125i
\(691\) −0.400638 + 3.81182i −0.0152410 + 0.145008i −0.999496 0.0317461i \(-0.989893\pi\)
0.984255 + 0.176755i \(0.0565599\pi\)
\(692\) −0.985051 + 1.09401i −0.0374460 + 0.0415880i
\(693\) −4.18732 1.86431i −0.159063 0.0708195i
\(694\) −4.91156 1.04398i −0.186440 0.0396291i
\(695\) −14.9913 + 3.18650i −0.568653 + 0.120871i
\(696\) 17.6045 7.83802i 0.667296 0.297099i
\(697\) −0.472136 + 1.45309i −0.0178834 + 0.0550395i
\(698\) 3.19098 9.82084i 0.120780 0.371724i
\(699\) 17.1732 7.64599i 0.649549 0.289198i
\(700\) 8.80333 1.87121i 0.332735 0.0707249i
\(701\) 29.3781 + 6.24451i 1.10960 + 0.235852i 0.726031 0.687662i \(-0.241363\pi\)
0.383565 + 0.923514i \(0.374696\pi\)
\(702\) −13.7032 6.10105i −0.517193 0.230269i
\(703\) −0.789802 + 0.877163i −0.0297879 + 0.0330828i
\(704\) 0.0188507 0.179352i 0.000710461 0.00675958i
\(705\) −7.16312 5.20431i −0.269779 0.196006i
\(706\) 2.09194 + 19.9035i 0.0787314 + 0.749079i
\(707\) −7.14590 + 12.3771i −0.268749 + 0.465487i
\(708\) 7.66312 + 13.2729i 0.287998 + 0.498827i
\(709\) 3.35410 2.43690i 0.125966 0.0915196i −0.523018 0.852321i \(-0.675194\pi\)
0.648984 + 0.760802i \(0.275194\pi\)
\(710\) 0.0976248 + 0.108423i 0.00366379 + 0.00406906i
\(711\) 0 0
\(712\) 14.2705 0.534810
\(713\) 0 0
\(714\) 0.437694 0.0163803
\(715\) 3.00000 + 9.23305i 0.112194 + 0.345297i
\(716\) 21.4352 + 23.8062i 0.801072 + 0.889681i
\(717\) −10.8541 + 7.88597i −0.405354 + 0.294507i
\(718\) −7.82624 13.5554i −0.292073 0.505885i
\(719\) −20.6910 + 35.8378i −0.771643 + 1.33653i 0.165018 + 0.986290i \(0.447232\pi\)
−0.936662 + 0.350235i \(0.886102\pi\)
\(720\) −1.01478 9.65502i −0.0378188 0.359821i
\(721\) 0.354102 + 0.257270i 0.0131874 + 0.00958124i
\(722\) 0.387613 3.68789i 0.0144255 0.137249i
\(723\) 5.70625 6.33744i 0.212218 0.235692i
\(724\) 25.1285 + 11.1879i 0.933894 + 0.415796i
\(725\) −15.6295 3.32216i −0.580467 0.123382i
\(726\) −6.29702 + 1.33847i −0.233704 + 0.0496754i
\(727\) −21.7724 + 9.69368i −0.807492 + 0.359519i −0.768604 0.639725i \(-0.779048\pi\)
−0.0388882 + 0.999244i \(0.512382\pi\)
\(728\) −10.0623 + 30.9686i −0.372934 + 1.14777i
\(729\) 4.01722 12.3637i 0.148786 0.457916i
\(730\) 12.6564 5.63497i 0.468433 0.208560i
\(731\) 1.06635 0.226659i 0.0394403 0.00838329i
\(732\) 10.9905 + 2.33611i 0.406222 + 0.0863451i
\(733\) 25.5284 + 11.3660i 0.942912 + 0.419811i 0.819844 0.572587i \(-0.194060\pi\)
0.123068 + 0.992398i \(0.460727\pi\)
\(734\) −14.9995 + 16.6586i −0.553642 + 0.614882i
\(735\) 0.547318 5.20738i 0.0201881 0.192077i
\(736\) 24.8713 + 18.0701i 0.916769 + 0.666072i
\(737\) 0.338261 + 3.21834i 0.0124600 + 0.118549i
\(738\) −4.00000 + 6.92820i −0.147242 + 0.255031i
\(739\) 10.8541 + 18.7999i 0.399275 + 0.691564i 0.993637 0.112634i \(-0.0359287\pi\)
−0.594362 + 0.804198i \(0.702595\pi\)
\(740\) 0.809017 0.587785i 0.0297401 0.0216074i
\(741\) −16.2401 18.0365i −0.596596 0.662588i
\(742\) −7.28115 22.4091i −0.267300 0.822663i
\(743\) 3.43769 0.126117 0.0630584 0.998010i \(-0.479915\pi\)
0.0630584 + 0.998010i \(0.479915\pi\)
\(744\) 0 0
\(745\) 44.5967 1.63390
\(746\) 0.0663712 + 0.204270i 0.00243002 + 0.00747884i
\(747\) −5.47372 6.07918i −0.200273 0.222425i
\(748\) −0.236068 + 0.171513i −0.00863150 + 0.00627115i
\(749\) −1.63525 2.83234i −0.0597509 0.103492i
\(750\) 2.54508 4.40822i 0.0929334 0.160965i
\(751\) 4.16366 + 39.6146i 0.151934 + 1.44556i 0.759096 + 0.650979i \(0.225641\pi\)
−0.607161 + 0.794578i \(0.707692\pi\)
\(752\) 5.07295 + 3.68571i 0.184991 + 0.134404i
\(753\) 0.0987033 0.939099i 0.00359695 0.0342227i
\(754\) 17.2998 19.2133i 0.630020 0.699709i
\(755\) −46.6537 20.7716i −1.69790 0.755955i
\(756\) −23.7401 5.04612i −0.863421 0.183526i
\(757\) 42.1822 8.96611i 1.53314 0.325879i 0.637426 0.770511i \(-0.279999\pi\)
0.895713 + 0.444632i \(0.146666\pi\)
\(758\) 10.3979 4.62946i 0.377670 0.168150i
\(759\) 1.29180 3.97574i 0.0468892 0.144310i
\(760\) −9.04508 + 27.8379i −0.328100 + 1.00979i
\(761\) −3.20342 + 1.42625i −0.116124 + 0.0517017i −0.463976 0.885848i \(-0.653578\pi\)
0.347852 + 0.937549i \(0.386911\pi\)
\(762\) −6.18799 + 1.31530i −0.224167 + 0.0476482i
\(763\) 24.6975 + 5.24961i 0.894108 + 0.190049i
\(764\) 23.7836 + 10.5892i 0.860462 + 0.383102i
\(765\) −0.827091 + 0.918578i −0.0299035 + 0.0332112i
\(766\) 1.08881 10.3593i 0.0393403 0.374298i
\(767\) 37.1976 + 27.0256i 1.34313 + 0.975838i
\(768\) 0.685948 + 6.52636i 0.0247520 + 0.235500i
\(769\) 26.8713 46.5425i 0.969005 1.67837i 0.270557 0.962704i \(-0.412792\pi\)
0.698447 0.715662i \(-0.253875\pi\)
\(770\) −1.85410 3.21140i −0.0668172 0.115731i
\(771\) −1.14590 + 0.832544i −0.0412685 + 0.0299833i
\(772\) 2.57890 + 2.86416i 0.0928166 + 0.103083i
\(773\) 5.89919 + 18.1558i 0.212179 + 0.653020i 0.999342 + 0.0362746i \(0.0115491\pi\)
−0.787163 + 0.616745i \(0.788451\pi\)
\(774\) 5.70820 0.205177
\(775\) 0 0
\(776\) −11.8328 −0.424773
\(777\) −0.218847 0.673542i −0.00785109 0.0241632i
\(778\) −12.0213 13.3510i −0.430985 0.478657i
\(779\) −26.1803 + 19.0211i −0.938008 + 0.681503i
\(780\) 10.2812 + 17.8075i 0.368124 + 0.637610i
\(781\) −0.0344419 + 0.0596550i −0.00123243 + 0.00213463i
\(782\) −0.0834528 0.794000i −0.00298427 0.0283934i
\(783\) 34.8607 + 25.3278i 1.24582 + 0.905141i
\(784\) −0.387613 + 3.68789i −0.0138433 + 0.131710i
\(785\) −17.0069 + 18.8881i −0.607002 + 0.674144i
\(786\) −0.0509101 0.0226667i −0.00181590 0.000808493i
\(787\) 30.6080 + 6.50593i 1.09106 + 0.231911i 0.718102 0.695938i \(-0.245011\pi\)
0.372955 + 0.927849i \(0.378344\pi\)
\(788\) −25.9819 + 5.52261i −0.925565 + 0.196735i
\(789\) 9.86481 4.39209i 0.351196 0.156363i
\(790\) 0 0
\(791\) −1.71885 + 5.29007i −0.0611152 + 0.188093i
\(792\) −3.12104 + 1.38958i −0.110901 + 0.0493765i
\(793\) 32.9716 7.00833i 1.17086 0.248873i
\(794\) 9.84885 + 2.09344i 0.349523 + 0.0742934i
\(795\) −30.3941 13.5323i −1.07797 0.479942i
\(796\) −28.9163 + 32.1148i −1.02491 + 1.13828i
\(797\) 0.946581 9.00612i 0.0335296 0.319013i −0.964883 0.262682i \(-0.915393\pi\)
0.998412 0.0563313i \(-0.0179403\pi\)
\(798\) 7.50000 + 5.44907i 0.265497 + 0.192895i
\(799\) −0.0834528 0.794000i −0.00295235 0.0280897i
\(800\) 5.20820 9.02087i 0.184138 0.318936i
\(801\) 6.38197 + 11.0539i 0.225496 + 0.390570i
\(802\) 14.9164 10.8374i 0.526717 0.382682i
\(803\) 4.37680 + 4.86092i 0.154454 + 0.171538i
\(804\) 2.11803 + 6.51864i 0.0746973 + 0.229895i
\(805\) −42.9787 −1.51480
\(806\) 0 0
\(807\) 1.38197 0.0486475
\(808\) 3.29180 + 10.1311i 0.115805 + 0.356411i
\(809\) −36.6673 40.7231i −1.28915 1.43175i −0.844046 0.536272i \(-0.819832\pi\)
−0.445107 0.895477i \(-0.646834\pi\)
\(810\) −1.30902 + 0.951057i −0.0459942 + 0.0334167i
\(811\) −21.3885 37.0460i −0.751053 1.30086i −0.947313 0.320311i \(-0.896213\pi\)
0.196259 0.980552i \(-0.437121\pi\)
\(812\) 20.9164 36.2283i 0.734022 1.27136i
\(813\) 0.999533 + 9.50992i 0.0350552 + 0.333528i
\(814\) −0.0901699 0.0655123i −0.00316045 0.00229620i
\(815\) −3.47772 + 33.0883i −0.121819 + 1.15903i
\(816\) −0.292875 + 0.325270i −0.0102527 + 0.0113867i
\(817\) 21.0939 + 9.39162i 0.737983 + 0.328571i
\(818\) 3.73619 + 0.794152i 0.130633 + 0.0277669i
\(819\) −28.4882 + 6.05535i −0.995457 + 0.211591i
\(820\) 25.0461 11.1513i 0.874649 0.389419i
\(821\) 10.0344 30.8828i 0.350204 1.07782i −0.608534 0.793528i \(-0.708242\pi\)
0.958738 0.284290i \(-0.0917580\pi\)
\(822\) −1.23607 + 3.80423i −0.0431128 + 0.132688i
\(823\) 5.59511 2.49110i 0.195033 0.0868344i −0.306896 0.951743i \(-0.599290\pi\)
0.501929 + 0.864909i \(0.332624\pi\)
\(824\) 0.319109 0.0678287i 0.0111167 0.00236292i
\(825\) −1.38546 0.294488i −0.0482354 0.0102527i
\(826\) −16.0440 7.14323i −0.558241 0.248545i
\(827\) −1.78910 + 1.98699i −0.0622130 + 0.0690945i −0.773448 0.633860i \(-0.781470\pi\)
0.711235 + 0.702954i \(0.248136\pi\)
\(828\) −1.85101 + 17.6112i −0.0643271 + 0.612031i
\(829\) −17.5623 12.7598i −0.609964 0.443165i 0.239438 0.970912i \(-0.423037\pi\)
−0.849402 + 0.527747i \(0.823037\pi\)
\(830\) −0.691773 6.58178i −0.0240118 0.228457i
\(831\) 6.66312 11.5409i 0.231141 0.400348i
\(832\) −0.572949 0.992377i −0.0198634 0.0344045i
\(833\) 0.381966 0.277515i 0.0132343 0.00961531i
\(834\) 2.42094 + 2.68872i 0.0838302 + 0.0931029i
\(835\) −7.47214 22.9969i −0.258584 0.795839i
\(836\) −6.18034 −0.213752
\(837\) 0 0
\(838\) −2.76393 −0.0954784
\(839\) 3.45492 + 10.6331i 0.119277 + 0.367097i 0.992815 0.119659i \(-0.0381802\pi\)
−0.873538 + 0.486756i \(0.838180\pi\)
\(840\) −11.7515 13.0513i −0.405464 0.450314i
\(841\) −36.6246 + 26.6093i −1.26292 + 0.917563i
\(842\) 4.56231 + 7.90215i 0.157227 + 0.272326i
\(843\) −9.51722 + 16.4843i −0.327791 + 0.567750i
\(844\) −1.35304 12.8734i −0.0465737 0.443119i
\(845\) 22.3713 + 16.2537i 0.769597 + 0.559145i
\(846\) 0.436965 4.15744i 0.0150231 0.142936i
\(847\) −20.9098 + 23.2227i −0.718470 + 0.797941i
\(848\) 21.5252 + 9.58365i 0.739180 + 0.329104i
\(849\) −6.41890 1.36438i −0.220296 0.0468254i
\(850\) −0.264599 + 0.0562422i −0.00907566 + 0.00192909i
\(851\) −1.18011 + 0.525421i −0.0404538 + 0.0180112i
\(852\) −0.0450850 + 0.138757i −0.00154459 + 0.00475375i
\(853\) 1.23607 3.80423i 0.0423222 0.130254i −0.927663 0.373419i \(-0.878185\pi\)
0.969985 + 0.243164i \(0.0781855\pi\)
\(854\) −11.7623 + 5.23689i −0.402496 + 0.179203i
\(855\) −25.6082 + 5.44320i −0.875783 + 0.186153i
\(856\) −2.38442 0.506825i −0.0814980 0.0173229i
\(857\) −7.47311 3.32724i −0.255277 0.113656i 0.275109 0.961413i \(-0.411286\pi\)
−0.530385 + 0.847757i \(0.677953\pi\)
\(858\) 1.53351 1.70314i 0.0523532 0.0581441i
\(859\) 4.52522 43.0546i 0.154399 1.46901i −0.593308 0.804976i \(-0.702178\pi\)
0.747706 0.664030i \(-0.231155\pi\)
\(860\) −15.8262 11.4984i −0.539670 0.392093i
\(861\) −2.02957 19.3100i −0.0691675 0.658084i
\(862\) 9.03444 15.6481i 0.307714 0.532977i
\(863\) 1.24671 + 2.15937i 0.0424385 + 0.0735057i 0.886464 0.462797i \(-0.153154\pi\)
−0.844026 + 0.536302i \(0.819821\pi\)
\(864\) −22.7254 + 16.5110i −0.773135 + 0.561715i
\(865\) −1.59385 1.77015i −0.0541924 0.0601868i
\(866\) 0.111456 + 0.343027i 0.00378744 + 0.0116565i
\(867\) −16.9443 −0.575458
\(868\) 0 0
\(869\) 0 0
\(870\) 4.30902 + 13.2618i 0.146089 + 0.449617i
\(871\) 13.7589 + 15.2808i 0.466201 + 0.517769i
\(872\) 15.2254 11.0619i 0.515598 0.374604i
\(873\) −5.29180 9.16566i −0.179100 0.310211i
\(874\) 8.45492 14.6443i 0.285992 0.495352i
\(875\) −2.58271 24.5728i −0.0873116 0.830714i
\(876\) 11.2082 + 8.14324i 0.378690 + 0.275134i
\(877\) −1.70296 + 16.2025i −0.0575048 + 0.547121i 0.927406 + 0.374057i \(0.122034\pi\)
−0.984911 + 0.173064i \(0.944633\pi\)
\(878\) −17.2998 + 19.2133i −0.583839 + 0.648419i
\(879\) −7.52402 3.34991i −0.253779 0.112990i
\(880\) 3.62717 + 0.770979i 0.122272 + 0.0259897i
\(881\) −15.0250 + 3.19366i −0.506206 + 0.107597i −0.453933 0.891036i \(-0.649980\pi\)
−0.0522720 + 0.998633i \(0.516646\pi\)
\(882\) 2.25841 1.00551i 0.0760446 0.0338572i
\(883\) 0.309017 0.951057i 0.0103992 0.0320056i −0.945722 0.324976i \(-0.894644\pi\)
0.956121 + 0.292970i \(0.0946438\pi\)
\(884\) −0.572949 + 1.76336i −0.0192704 + 0.0593081i
\(885\) −22.6544 + 10.0864i −0.761521 + 0.339051i
\(886\) −24.8610 + 5.28437i −0.835222 + 0.177532i
\(887\) −38.2488 8.13004i −1.28427 0.272980i −0.485298 0.874349i \(-0.661289\pi\)
−0.798972 + 0.601369i \(0.794622\pi\)
\(888\) −0.482228 0.214702i −0.0161825 0.00720492i
\(889\) −20.5478 + 22.8206i −0.689151 + 0.765380i
\(890\) −1.07939 + 10.2697i −0.0361811 + 0.344240i
\(891\) −0.618034 0.449028i −0.0207049 0.0150430i
\(892\) −0.119779 1.13962i −0.00401050 0.0381573i
\(893\) 8.45492 14.6443i 0.282933 0.490054i
\(894\) −5.26393 9.11740i −0.176052 0.304931i
\(895\) −41.9336 + 30.4666i −1.40169 + 1.01838i
\(896\) 22.8481 + 25.3753i 0.763300 + 0.847731i
\(897\) −8.20820 25.2623i −0.274064 0.843482i
\(898\) 14.8754 0.496398
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) −0.927051 2.85317i −0.0308845 0.0950529i
\(902\) −2.04468 2.27085i −0.0680804 0.0756110i
\(903\) −11.2082 + 8.14324i −0.372986 + 0.270990i
\(904\) 2.07295 + 3.59045i 0.0689453 + 0.119417i
\(905\) −22.2533 + 38.5438i −0.739724 + 1.28124i
\(906\) 1.26017 + 11.9897i 0.0418662 + 0.398331i
\(907\) −42.8156 31.1074i −1.42167 1.03290i −0.991493 0.130157i \(-0.958452\pi\)
−0.430175 0.902745i \(-0.641548\pi\)
\(908\) −3.50822 + 33.3784i −0.116424 + 1.10770i
\(909\) −6.37539 + 7.08058i −0.211458 + 0.234848i
\(910\) −21.5252 9.58365i −0.713555 0.317695i
\(911\) 8.00158 + 1.70079i 0.265104 + 0.0563496i 0.338546 0.940950i \(-0.390065\pi\)
−0.0734417 + 0.997300i \(0.523398\pi\)
\(912\) −9.06793 + 1.92745i −0.300269 + 0.0638242i
\(913\) 2.85447 1.27089i 0.0944693 0.0420605i
\(914\) −3.00658 + 9.25330i −0.0994488 + 0.306072i
\(915\) −5.61803 + 17.2905i −0.185726 + 0.571607i
\(916\) −10.6960 + 4.76216i −0.353405 + 0.157346i
\(917\) −0.264599 + 0.0562422i −0.00873781 + 0.00185728i
\(918\) 0.713549 + 0.151670i 0.0235506 + 0.00500584i
\(919\) 9.02162 + 4.01668i 0.297596 + 0.132498i 0.550103 0.835097i \(-0.314588\pi\)
−0.252507 + 0.967595i \(0.581255\pi\)
\(920\) −21.4352 + 23.8062i −0.706698 + 0.784868i
\(921\) −0.636596 + 6.05681i −0.0209766 + 0.199579i
\(922\) −5.37132 3.90249i −0.176895 0.128522i
\(923\) 0.0457515 + 0.435296i 0.00150593 + 0.0143280i
\(924\) 1.85410 3.21140i 0.0609955 0.105647i
\(925\) 0.218847 + 0.379054i 0.00719565 + 0.0124632i
\(926\) 15.5623 11.3067i 0.511409 0.371560i
\(927\) 0.195250 + 0.216847i 0.00641284 + 0.00712218i
\(928\) −14.9615 46.0467i −0.491135 1.51156i
\(929\) −33.5410 −1.10045 −0.550223 0.835018i \(-0.685457\pi\)
−0.550223 + 0.835018i \(0.685457\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) −9.39919 28.9277i −0.307881 0.947559i
\(933\) 11.0220 + 12.2412i 0.360844 + 0.400758i
\(934\) −16.3885 + 11.9070i −0.536250 + 0.389608i
\(935\) −0.236068 0.408882i −0.00772025 0.0133719i
\(936\) −10.8541 + 18.7999i −0.354777 + 0.614493i
\(937\) −4.23187 40.2635i −0.138249 1.31535i −0.815138 0.579267i \(-0.803339\pi\)
0.676889 0.736085i \(-0.263328\pi\)
\(938\) −6.35410 4.61653i −0.207469 0.150735i
\(939\) 0.129204 1.22930i 0.00421642 0.0401166i
\(940\) −9.58612 + 10.6465i −0.312665 + 0.347250i
\(941\) −26.1124 11.6260i −0.851240 0.378997i −0.0657242 0.997838i \(-0.520936\pi\)
−0.785516 + 0.618841i \(0.787602\pi\)
\(942\) 5.86889 + 1.24747i 0.191219 + 0.0406448i
\(943\) −34.6425 + 7.36349i −1.12811 + 0.239788i
\(944\) 16.0440 7.14323i 0.522187 0.232492i
\(945\) 12.1353 37.3485i 0.394760 1.21495i
\(946\) −0.673762 + 2.07363i −0.0219059 + 0.0674194i
\(947\) −20.1609 + 8.97622i −0.655142 + 0.291688i −0.707261 0.706953i \(-0.750069\pi\)
0.0521186 + 0.998641i \(0.483403\pi\)
\(948\) 0 0
\(949\) 40.6541 + 8.64129i 1.31969 + 0.280508i
\(950\) −5.23415 2.33039i −0.169818 0.0756080i
\(951\) 17.3228 19.2389i 0.561731 0.623865i
\(952\) 0.165530 1.57492i 0.00536487 0.0510434i
\(953\) 34.1525 + 24.8132i 1.10631 + 0.803779i 0.982078 0.188474i \(-0.0603542\pi\)
0.124229 + 0.992254i \(0.460354\pi\)
\(954\) −1.64195 15.6222i −0.0531602 0.505786i
\(955\) −21.0623 + 36.4810i −0.681560 + 1.18050i
\(956\) 10.8541 + 18.7999i 0.351047 + 0.608031i
\(957\) −5.32624 + 3.86974i −0.172173 + 0.125091i
\(958\) 3.69886 + 4.10800i 0.119505 + 0.132724i
\(959\) 6.00000 + 18.4661i 0.193750 + 0.596302i
\(960\) 0.618034 0.0199470
\(961\) 0 0
\(962\) −0.708204 −0.0228334
\(963\) −0.673762 2.07363i −0.0217117 0.0668217i
\(964\) −9.23291 10.2542i −0.297372 0.330265i
\(965\) −5.04508 + 3.66547i −0.162407 + 0.117996i
\(966\) 5.07295 + 8.78661i 0.163219 + 0.282704i
\(967\) 21.8262 37.8042i 0.701884 1.21570i −0.265920 0.963995i \(-0.585676\pi\)
0.967804 0.251704i \(-0.0809911\pi\)
\(968\) 2.43466 + 23.1642i 0.0782528 + 0.744526i
\(969\) 0.954915 + 0.693786i 0.0306763 + 0.0222876i
\(970\) 0.895005 8.51540i 0.0287369 0.273413i
\(971\) −13.7589 + 15.2808i −0.441543 + 0.490383i −0.922302 0.386469i \(-0.873694\pi\)
0.480759 + 0.876853i \(0.340361\pi\)
\(972\) −23.6504 10.5298i −0.758586 0.337744i
\(973\) 17.1785 + 3.65141i 0.550718 + 0.117059i
\(974\) −13.8576 + 2.94552i −0.444026 + 0.0943807i
\(975\) −8.22191 + 3.66063i −0.263312 + 0.117234i
\(976\) 3.97871 12.2452i 0.127356 0.391960i
\(977\) −1.87539 + 5.77185i −0.0599990 + 0.184658i −0.976564 0.215228i \(-0.930950\pi\)
0.916565 + 0.399886i \(0.130950\pi\)
\(978\) 7.17508 3.19455i 0.229434 0.102150i
\(979\) −4.76885 + 1.01365i −0.152413 + 0.0323964i
\(980\) −8.28700 1.76146i −0.264718 0.0562677i
\(981\) 15.3775 + 6.84652i 0.490967 + 0.218593i
\(982\) −11.4125 + 12.6749i −0.364188 + 0.404472i
\(983\) 2.19870 20.9192i 0.0701276 0.667219i −0.901835 0.432082i \(-0.857779\pi\)
0.971962 0.235138i \(-0.0755541\pi\)
\(984\) −11.7082 8.50651i −0.373244 0.271178i
\(985\) −4.49250 42.7433i −0.143143 1.36191i
\(986\) −0.628677 + 1.08890i −0.0200212 + 0.0346777i
\(987\) 5.07295 + 8.78661i 0.161474 + 0.279681i
\(988\) −31.7705 + 23.0826i −1.01075 + 0.734356i
\(989\) 16.9093 + 18.7796i 0.537684 + 0.597158i
\(990\) −0.763932 2.35114i −0.0242794 0.0747242i
\(991\) 17.2705 0.548616 0.274308 0.961642i \(-0.411551\pi\)
0.274308 + 0.961642i \(0.411551\pi\)
\(992\) 0 0
\(993\) −11.2705 −0.357659
\(994\) −0.0516628 0.159002i −0.00163864 0.00504323i
\(995\) −46.7876 51.9629i −1.48327 1.64733i
\(996\) 5.35410 3.88998i 0.169651 0.123259i
\(997\) 13.6246 + 23.5985i 0.431496 + 0.747373i 0.997002 0.0773712i \(-0.0246526\pi\)
−0.565507 + 0.824744i \(0.691319\pi\)
\(998\) −1.28115 + 2.21902i −0.0405542 + 0.0702419i
\(999\) −0.123379 1.17387i −0.00390354 0.0371397i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.c.547.1 8
31.2 even 5 961.2.g.g.235.1 8
31.3 odd 30 961.2.c.f.521.1 4
31.4 even 5 961.2.g.g.816.1 8
31.5 even 3 961.2.d.b.531.1 4
31.6 odd 6 961.2.g.b.844.1 8
31.7 even 15 961.2.g.g.732.1 8
31.8 even 5 inner 961.2.g.c.846.1 8
31.9 even 15 961.2.d.b.628.1 4
31.10 even 15 961.2.d.e.388.1 4
31.11 odd 30 961.2.d.f.374.1 4
31.12 odd 30 961.2.g.f.338.1 8
31.13 odd 30 961.2.a.d.1.1 2
31.14 even 15 inner 961.2.g.c.448.1 8
31.15 odd 10 961.2.c.f.439.1 4
31.16 even 5 961.2.c.d.439.1 4
31.17 odd 30 961.2.g.b.448.1 8
31.18 even 15 961.2.a.e.1.1 2
31.19 even 15 961.2.g.g.338.1 8
31.20 even 15 961.2.d.e.374.1 4
31.21 odd 30 961.2.d.f.388.1 4
31.22 odd 30 31.2.d.a.8.1 yes 4
31.23 odd 10 961.2.g.b.846.1 8
31.24 odd 30 961.2.g.f.732.1 8
31.25 even 3 inner 961.2.g.c.844.1 8
31.26 odd 6 31.2.d.a.4.1 4
31.27 odd 10 961.2.g.f.816.1 8
31.28 even 15 961.2.c.d.521.1 4
31.29 odd 10 961.2.g.f.235.1 8
31.30 odd 2 961.2.g.b.547.1 8
93.26 even 6 279.2.i.a.190.1 4
93.44 even 30 8649.2.a.g.1.2 2
93.53 even 30 279.2.i.a.163.1 4
93.80 odd 30 8649.2.a.f.1.2 2
124.115 even 30 496.2.n.b.225.1 4
124.119 even 6 496.2.n.b.97.1 4
155.22 even 60 775.2.bf.a.349.1 8
155.53 even 60 775.2.bf.a.349.2 8
155.57 even 12 775.2.bf.a.624.2 8
155.84 odd 30 775.2.k.c.101.1 4
155.88 even 12 775.2.bf.a.624.1 8
155.119 odd 6 775.2.k.c.376.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.4.1 4 31.26 odd 6
31.2.d.a.8.1 yes 4 31.22 odd 30
279.2.i.a.163.1 4 93.53 even 30
279.2.i.a.190.1 4 93.26 even 6
496.2.n.b.97.1 4 124.119 even 6
496.2.n.b.225.1 4 124.115 even 30
775.2.k.c.101.1 4 155.84 odd 30
775.2.k.c.376.1 4 155.119 odd 6
775.2.bf.a.349.1 8 155.22 even 60
775.2.bf.a.349.2 8 155.53 even 60
775.2.bf.a.624.1 8 155.88 even 12
775.2.bf.a.624.2 8 155.57 even 12
961.2.a.d.1.1 2 31.13 odd 30
961.2.a.e.1.1 2 31.18 even 15
961.2.c.d.439.1 4 31.16 even 5
961.2.c.d.521.1 4 31.28 even 15
961.2.c.f.439.1 4 31.15 odd 10
961.2.c.f.521.1 4 31.3 odd 30
961.2.d.b.531.1 4 31.5 even 3
961.2.d.b.628.1 4 31.9 even 15
961.2.d.e.374.1 4 31.20 even 15
961.2.d.e.388.1 4 31.10 even 15
961.2.d.f.374.1 4 31.11 odd 30
961.2.d.f.388.1 4 31.21 odd 30
961.2.g.b.448.1 8 31.17 odd 30
961.2.g.b.547.1 8 31.30 odd 2
961.2.g.b.844.1 8 31.6 odd 6
961.2.g.b.846.1 8 31.23 odd 10
961.2.g.c.448.1 8 31.14 even 15 inner
961.2.g.c.547.1 8 1.1 even 1 trivial
961.2.g.c.844.1 8 31.25 even 3 inner
961.2.g.c.846.1 8 31.8 even 5 inner
961.2.g.f.235.1 8 31.29 odd 10
961.2.g.f.338.1 8 31.12 odd 30
961.2.g.f.732.1 8 31.24 odd 30
961.2.g.f.816.1 8 31.27 odd 10
961.2.g.g.235.1 8 31.2 even 5
961.2.g.g.338.1 8 31.19 even 15
961.2.g.g.732.1 8 31.7 even 15
961.2.g.g.816.1 8 31.4 even 5
8649.2.a.f.1.2 2 93.80 odd 30
8649.2.a.g.1.2 2 93.44 even 30