Properties

Label 16-31e16-1.1-c1e8-0-15
Degree $16$
Conductor $7.274\times 10^{23}$
Sign $1$
Analytic cond. $1.20227\times 10^{7}$
Root an. cond. $2.77013$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $8$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3·3-s − 2·4-s + 3·5-s − 6·6-s − 2·7-s − 11·8-s − 5·9-s + 6·10-s − 18·11-s + 6·12-s − 8·13-s − 4·14-s − 9·15-s − 11·16-s − 14·17-s − 10·18-s − 6·19-s − 6·20-s + 6·21-s − 36·22-s − 22·23-s + 33·24-s − 9·25-s − 16·26-s + 21·27-s + 4·28-s + ⋯
L(s)  = 1  + 1.41·2-s − 1.73·3-s − 4-s + 1.34·5-s − 2.44·6-s − 0.755·7-s − 3.88·8-s − 5/3·9-s + 1.89·10-s − 5.42·11-s + 1.73·12-s − 2.21·13-s − 1.06·14-s − 2.32·15-s − 2.75·16-s − 3.39·17-s − 2.35·18-s − 1.37·19-s − 1.34·20-s + 1.30·21-s − 7.67·22-s − 4.58·23-s + 6.73·24-s − 9/5·25-s − 3.13·26-s + 4.04·27-s + 0.755·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(31^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(31^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(31^{16}\)
Sign: $1$
Analytic conductor: \(1.20227\times 10^{7}\)
Root analytic conductor: \(2.77013\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(8\)
Selberg data: \((16,\ 31^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 - p T + 3 p T^{2} - 5 T^{3} + 11 T^{4} - T^{5} + 15 T^{6} + 9 T^{7} + 27 T^{8} + 9 p T^{9} + 15 p^{2} T^{10} - p^{3} T^{11} + 11 p^{4} T^{12} - 5 p^{5} T^{13} + 3 p^{7} T^{14} - p^{8} T^{15} + p^{8} T^{16} \)
3 \( 1 + p T + 14 T^{2} + 4 p^{2} T^{3} + 37 p T^{4} + 26 p^{2} T^{5} + 560 T^{6} + 335 p T^{7} + 1987 T^{8} + 335 p^{2} T^{9} + 560 p^{2} T^{10} + 26 p^{5} T^{11} + 37 p^{5} T^{12} + 4 p^{7} T^{13} + 14 p^{6} T^{14} + p^{8} T^{15} + p^{8} T^{16} \)
5 \( 1 - 3 T + 18 T^{2} - 36 T^{3} + 31 p T^{4} - 261 T^{5} + 993 T^{6} - 1428 T^{7} + 5151 T^{8} - 1428 p T^{9} + 993 p^{2} T^{10} - 261 p^{3} T^{11} + 31 p^{5} T^{12} - 36 p^{5} T^{13} + 18 p^{6} T^{14} - 3 p^{7} T^{15} + p^{8} T^{16} \)
7 \( 1 + 2 T + 31 T^{2} + 60 T^{3} + 506 T^{4} + 881 T^{5} + 5550 T^{6} + 8441 T^{7} + 44837 T^{8} + 8441 p T^{9} + 5550 p^{2} T^{10} + 881 p^{3} T^{11} + 506 p^{4} T^{12} + 60 p^{5} T^{13} + 31 p^{6} T^{14} + 2 p^{7} T^{15} + p^{8} T^{16} \)
11 \( 1 + 18 T + 219 T^{2} + 1875 T^{3} + 12998 T^{4} + 73485 T^{5} + 354666 T^{6} + 132522 p T^{7} + 5210553 T^{8} + 132522 p^{2} T^{9} + 354666 p^{2} T^{10} + 73485 p^{3} T^{11} + 12998 p^{4} T^{12} + 1875 p^{5} T^{13} + 219 p^{6} T^{14} + 18 p^{7} T^{15} + p^{8} T^{16} \)
13 \( 1 + 8 T + 100 T^{2} + 567 T^{3} + 4139 T^{4} + 18554 T^{5} + 100344 T^{6} + 368819 T^{7} + 1591961 T^{8} + 368819 p T^{9} + 100344 p^{2} T^{10} + 18554 p^{3} T^{11} + 4139 p^{4} T^{12} + 567 p^{5} T^{13} + 100 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
17 \( 1 + 14 T + 171 T^{2} + 1412 T^{3} + 10571 T^{4} + 64147 T^{5} + 358770 T^{6} + 1712910 T^{7} + 7592697 T^{8} + 1712910 p T^{9} + 358770 p^{2} T^{10} + 64147 p^{3} T^{11} + 10571 p^{4} T^{12} + 1412 p^{5} T^{13} + 171 p^{6} T^{14} + 14 p^{7} T^{15} + p^{8} T^{16} \)
19 \( 1 + 6 T + 126 T^{2} + 550 T^{3} + 6723 T^{4} + 22465 T^{5} + 213499 T^{6} + 577881 T^{7} + 4727383 T^{8} + 577881 p T^{9} + 213499 p^{2} T^{10} + 22465 p^{3} T^{11} + 6723 p^{4} T^{12} + 550 p^{5} T^{13} + 126 p^{6} T^{14} + 6 p^{7} T^{15} + p^{8} T^{16} \)
23 \( 1 + 22 T + 372 T^{2} + 4321 T^{3} + 42281 T^{4} + 334832 T^{5} + 2312310 T^{6} + 13546893 T^{7} + 70125249 T^{8} + 13546893 p T^{9} + 2312310 p^{2} T^{10} + 334832 p^{3} T^{11} + 42281 p^{4} T^{12} + 4321 p^{5} T^{13} + 372 p^{6} T^{14} + 22 p^{7} T^{15} + p^{8} T^{16} \)
29 \( 1 + 12 T + 228 T^{2} + 2067 T^{3} + 22391 T^{4} + 160170 T^{5} + 1262877 T^{6} + 7289670 T^{7} + 45291747 T^{8} + 7289670 p T^{9} + 1262877 p^{2} T^{10} + 160170 p^{3} T^{11} + 22391 p^{4} T^{12} + 2067 p^{5} T^{13} + 228 p^{6} T^{14} + 12 p^{7} T^{15} + p^{8} T^{16} \)
37 \( 1 - 8 T + 184 T^{2} - 1003 T^{3} + 14093 T^{4} - 50978 T^{5} + 642206 T^{6} - 1564129 T^{7} + 23810023 T^{8} - 1564129 p T^{9} + 642206 p^{2} T^{10} - 50978 p^{3} T^{11} + 14093 p^{4} T^{12} - 1003 p^{5} T^{13} + 184 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
41 \( 1 + 22 T + 498 T^{2} + 6811 T^{3} + 89027 T^{4} + 877490 T^{5} + 8169387 T^{6} + 61298622 T^{7} + 433574745 T^{8} + 61298622 p T^{9} + 8169387 p^{2} T^{10} + 877490 p^{3} T^{11} + 89027 p^{4} T^{12} + 6811 p^{5} T^{13} + 498 p^{6} T^{14} + 22 p^{7} T^{15} + p^{8} T^{16} \)
43 \( 1 - 2 T + 205 T^{2} - 403 T^{3} + 21134 T^{4} - 40961 T^{5} + 1453424 T^{6} - 2649346 T^{7} + 72598441 T^{8} - 2649346 p T^{9} + 1453424 p^{2} T^{10} - 40961 p^{3} T^{11} + 21134 p^{4} T^{12} - 403 p^{5} T^{13} + 205 p^{6} T^{14} - 2 p^{7} T^{15} + p^{8} T^{16} \)
47 \( 1 + 18 T + 411 T^{2} + 4965 T^{3} + 66911 T^{4} + 618324 T^{5} + 6152625 T^{6} + 45556584 T^{7} + 358374597 T^{8} + 45556584 p T^{9} + 6152625 p^{2} T^{10} + 618324 p^{3} T^{11} + 66911 p^{4} T^{12} + 4965 p^{5} T^{13} + 411 p^{6} T^{14} + 18 p^{7} T^{15} + p^{8} T^{16} \)
53 \( 1 + 6 T + 244 T^{2} + 1605 T^{3} + 30376 T^{4} + 203598 T^{5} + 2505355 T^{6} + 16037007 T^{7} + 152391427 T^{8} + 16037007 p T^{9} + 2505355 p^{2} T^{10} + 203598 p^{3} T^{11} + 30376 p^{4} T^{12} + 1605 p^{5} T^{13} + 244 p^{6} T^{14} + 6 p^{7} T^{15} + p^{8} T^{16} \)
59 \( 1 + 4 T + 309 T^{2} + 1189 T^{3} + 45401 T^{4} + 174557 T^{5} + 4316301 T^{6} + 15922002 T^{7} + 295944207 T^{8} + 15922002 p T^{9} + 4316301 p^{2} T^{10} + 174557 p^{3} T^{11} + 45401 p^{4} T^{12} + 1189 p^{5} T^{13} + 309 p^{6} T^{14} + 4 p^{7} T^{15} + p^{8} T^{16} \)
61 \( 1 + 30 T + 776 T^{2} + 13665 T^{3} + 208005 T^{4} + 2593710 T^{5} + 28390399 T^{6} + 268109040 T^{7} + 2240276459 T^{8} + 268109040 p T^{9} + 28390399 p^{2} T^{10} + 2593710 p^{3} T^{11} + 208005 p^{4} T^{12} + 13665 p^{5} T^{13} + 776 p^{6} T^{14} + 30 p^{7} T^{15} + p^{8} T^{16} \)
67 \( 1 + 13 T + 427 T^{2} + 4781 T^{3} + 85148 T^{4} + 816694 T^{5} + 10335824 T^{6} + 84073193 T^{7} + 837177553 T^{8} + 84073193 p T^{9} + 10335824 p^{2} T^{10} + 816694 p^{3} T^{11} + 85148 p^{4} T^{12} + 4781 p^{5} T^{13} + 427 p^{6} T^{14} + 13 p^{7} T^{15} + p^{8} T^{16} \)
71 \( 1 + T + 465 T^{2} + 325 T^{3} + 99635 T^{4} + 48353 T^{5} + 12913848 T^{6} + 4606650 T^{7} + 1111294875 T^{8} + 4606650 p T^{9} + 12913848 p^{2} T^{10} + 48353 p^{3} T^{11} + 99635 p^{4} T^{12} + 325 p^{5} T^{13} + 465 p^{6} T^{14} + p^{7} T^{15} + p^{8} T^{16} \)
73 \( 1 + 2 T + 280 T^{2} + 423 T^{3} + 39254 T^{4} + 42716 T^{5} + 3669099 T^{6} + 2910611 T^{7} + 282548711 T^{8} + 2910611 p T^{9} + 3669099 p^{2} T^{10} + 42716 p^{3} T^{11} + 39254 p^{4} T^{12} + 423 p^{5} T^{13} + 280 p^{6} T^{14} + 2 p^{7} T^{15} + p^{8} T^{16} \)
79 \( 1 + 8 T + 343 T^{2} + 2748 T^{3} + 65666 T^{4} + 478310 T^{5} + 8349177 T^{6} + 54496370 T^{7} + 769049897 T^{8} + 54496370 p T^{9} + 8349177 p^{2} T^{10} + 478310 p^{3} T^{11} + 65666 p^{4} T^{12} + 2748 p^{5} T^{13} + 343 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
83 \( 1 + 39 T + 12 p T^{2} + 18231 T^{3} + 273488 T^{4} + 3449334 T^{5} + 38635404 T^{6} + 390596853 T^{7} + 3688239693 T^{8} + 390596853 p T^{9} + 38635404 p^{2} T^{10} + 3449334 p^{3} T^{11} + 273488 p^{4} T^{12} + 18231 p^{5} T^{13} + 12 p^{7} T^{14} + 39 p^{7} T^{15} + p^{8} T^{16} \)
89 \( 1 + 27 T + 807 T^{2} + 15033 T^{3} + 266447 T^{4} + 3727035 T^{5} + 48700278 T^{6} + 532857324 T^{7} + 5459588145 T^{8} + 532857324 p T^{9} + 48700278 p^{2} T^{10} + 3727035 p^{3} T^{11} + 266447 p^{4} T^{12} + 15033 p^{5} T^{13} + 807 p^{6} T^{14} + 27 p^{7} T^{15} + p^{8} T^{16} \)
97 \( 1 - 34 T + 1021 T^{2} - 20487 T^{3} + 372881 T^{4} - 5460517 T^{5} + 73647420 T^{6} - 843517135 T^{7} + 8954673947 T^{8} - 843517135 p T^{9} + 73647420 p^{2} T^{10} - 5460517 p^{3} T^{11} + 372881 p^{4} T^{12} - 20487 p^{5} T^{13} + 1021 p^{6} T^{14} - 34 p^{7} T^{15} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.76215951198312336723481108109, −4.75635777463472870802826509276, −4.67819292569890196664591076752, −4.55391159967375220447126906130, −4.49168103786802189546101103512, −4.45312723315692809986745786382, −4.23105578159503209608378092609, −3.86546062320237866549764136901, −3.75412114503109892793723639524, −3.68908864272905324600337928599, −3.44517747570623331972260076133, −3.34003095594142756711301675214, −3.26854942024922063575180897825, −3.24838054942234849819621508955, −2.84786392983352421331922844007, −2.66617749922296601698038303947, −2.66033597440844393867383850860, −2.46566911955483183659778538062, −2.39710487264412169029959229348, −2.35378704719709710375129019762, −2.15009586201185655449189305626, −1.88638246550426006134732610674, −1.77682932002744698492454962367, −1.74651535124718702871677050199, −1.53693472626597640772997237449, 0, 0, 0, 0, 0, 0, 0, 0, 1.53693472626597640772997237449, 1.74651535124718702871677050199, 1.77682932002744698492454962367, 1.88638246550426006134732610674, 2.15009586201185655449189305626, 2.35378704719709710375129019762, 2.39710487264412169029959229348, 2.46566911955483183659778538062, 2.66033597440844393867383850860, 2.66617749922296601698038303947, 2.84786392983352421331922844007, 3.24838054942234849819621508955, 3.26854942024922063575180897825, 3.34003095594142756711301675214, 3.44517747570623331972260076133, 3.68908864272905324600337928599, 3.75412114503109892793723639524, 3.86546062320237866549764136901, 4.23105578159503209608378092609, 4.45312723315692809986745786382, 4.49168103786802189546101103512, 4.55391159967375220447126906130, 4.67819292569890196664591076752, 4.75635777463472870802826509276, 4.76215951198312336723481108109

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.