Subgroup ($H$) information
Description: | $C_3^2$ |
Order: | \(9\)\(\medspace = 3^{2} \) |
Index: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Exponent: | \(3\) |
Generators: |
$\langle(1,4,2)(3,8,5)(6,7,9)(10,12,13), (1,6,3)(2,9,5)(4,7,8)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_3^3:S_3^2$ |
Order: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^4:(D_4\times \GL(2,3))$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \) |
$\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\operatorname{res}(S)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(162\)\(\medspace = 2 \cdot 3^{4} \) |
$W$ | $C_3$, of order \(3\) |
Related subgroups
Centralizer: | $C_3^4$ | ||||
Normalizer: | $C_3^2\times \He_3$ | ||||
Normal closure: | $C_3^4$ | ||||
Core: | $C_3$ | ||||
Minimal over-subgroups: | $C_3^3$ | $C_3^3$ | $C_3^3$ | $\He_3$ | $\He_3$ |
Maximal under-subgroups: | $C_3$ | $C_3$ |
Other information
Number of subgroups in this autjugacy class | $16$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | $0$ |
Projective image | $C_3^2:S_3^2$ |