Properties

Label 972.817.108.f1
Order $ 3^{2} $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(3\)
Generators: $\langle(1,4,2)(3,8,5)(6,7,9)(10,12,13), (1,6,3)(2,9,5)(4,7,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_3^3:S_3^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:(D_4\times \GL(2,3))$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(162\)\(\medspace = 2 \cdot 3^{4} \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_3^4$
Normalizer:$C_3^2\times \He_3$
Normal closure:$C_3^4$
Core:$C_3$
Minimal over-subgroups:$C_3^3$$C_3^3$$C_3^3$$\He_3$$\He_3$
Maximal under-subgroups:$C_3$$C_3$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_3^2:S_3^2$