Subgroup ($H$) information
| Description: | $C_3$ |
| Order: | \(3\) |
| Index: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
| Exponent: | \(3\) |
| Generators: |
$\langle(1,4,2)(3,8,5)(6,7,9)(10,12,13)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Ambient group ($G$) information
| Description: | $C_3^3:S_3^2$ |
| Order: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4:(D_4\times \GL(2,3))$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \) |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $\operatorname{res}(S)$ | $C_2$, of order \(2\) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_3^4$ | ||||||
| Normalizer: | $C_3^4$ | ||||||
| Normal closure: | $C_3^4$ | ||||||
| Core: | $C_1$ | ||||||
| Minimal over-subgroups: | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ |
| Maximal under-subgroups: | $C_1$ |
Other information
| Number of subgroups in this autjugacy class | $48$ |
| Number of conjugacy classes in this autjugacy class | $4$ |
| Möbius function | $0$ |
| Projective image | $C_3^3:S_3^2$ |