Properties

Label 972.817.324.h1
Order $ 3 $
Index $ 2^{2} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(3\)
Generators: $\langle(1,4,2)(3,8,5)(6,7,9)(10,12,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_3^3:S_3^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:(D_4\times \GL(2,3))$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3^4$
Normalizer:$C_3^4$
Normal closure:$C_3^4$
Core:$C_1$
Minimal over-subgroups:$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$48$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_3^3:S_3^2$