Properties

Label 972.817.36.h1
Order $ 3^{3} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\He_3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(3\)
Generators: $\langle(1,4,2)(3,8,5)(6,7,9), (2,9,5)(4,8,7)(10,12,13), (1,6,3)(2,9,5)(4,7,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3^3:S_3^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:(D_4\times \GL(2,3))$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(18\)\(\medspace = 2 \cdot 3^{2} \)
$W$$C_3^2$, of order \(9\)\(\medspace = 3^{2} \)

Related subgroups

Centralizer:$C_3^3$
Normalizer:$C_3^2\times \He_3$
Normal closure:$C_3^2\times \He_3$
Core:$C_3^2$
Minimal over-subgroups:$C_3\times \He_3$$C_3\times \He_3$$C_3\times \He_3$
Maximal under-subgroups:$C_3^2$$C_3^2$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_3^2:S_3^2$