Subgroup ($H$) information
Description: | $C_3^3$ |
Order: | \(27\)\(\medspace = 3^{3} \) |
Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Exponent: | \(3\) |
Generators: |
$\langle(10,12,13)(11,15,14), (1,4,2)(3,8,5)(6,7,9)(11,14,15), (1,6,3)(2,9,5)(4,7,8)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
Description: | $C_3^3:S_3^2$ |
Order: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^4:(D_4\times \GL(2,3))$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \) |
$\operatorname{Aut}(H)$ | $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \) |
$\operatorname{res}(S)$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(81\)\(\medspace = 3^{4} \) |
$W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $16$ |
Number of conjugacy classes in this autjugacy class | $8$ |
Möbius function | $0$ |
Projective image | $C_3^2:S_3^2$ |