Properties

Label 972.817.324.a1
Order $ 3 $
Index $ 2^{2} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(3\)
Generators: $\langle(1,6,3)(2,9,5)(4,7,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), stem, a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_3^3:S_3^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3^2:S_3^2$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_3^4:(D_4\times \GL(2,3))$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
Outer Automorphisms: $C_2\times \GL(2,3)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:(D_4\times \GL(2,3))$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3^3:S_3^2$
Normalizer:$C_3^3:S_3^2$
Minimal over-subgroups:$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_6$$C_6$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$486$
Projective image$C_3^2:S_3^2$