Properties

Label 95040.a.23760.c1.b1
Order $ 2^{2} $
Index $ 2^{4} \cdot 3^{3} \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(23760\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(2,3)(4,11)(5,8)(7,12), (2,4,3,11)(5,12,8,7)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $M_{12}$
Order: \(95040\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$M_{12}:C_2$, of order \(190080\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_4\wr C_2$
Normalizer:$D_4:D_4$
Normal closure:$M_{12}$
Core:$C_1$
Minimal over-subgroups:$C_3^2:C_4$$F_5$$C_2\times C_4$$D_4$$D_4$$C_8$$Q_8$$C_2\times C_4$$D_4$
Maximal under-subgroups:$C_2$
Autjugate subgroups:95040.a.23760.c1.a1

Other information

Number of subgroups in this conjugacy class$1485$
Möbius function$16$
Projective image$M_{12}$