Properties

Label 95040.a.4752.b1.b1
Order $ 2^{2} \cdot 5 $
Index $ 2^{4} \cdot 3^{3} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$F_5$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(4752\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 11 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(2,5,3,8)(4,7,11,12), (2,3)(4,11)(5,8)(7,12), (2,6,3,8,5)(4,11,7,10,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $M_{12}$
Order: \(95040\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$M_{12}:C_2$, of order \(190080\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times F_5$
Normal closure:$M_{12}$
Core:$C_1$
Minimal over-subgroups:$A_6.C_2$$S_5$$S_5$$C_2\times F_5$
Maximal under-subgroups:$D_5$$C_4$
Autjugate subgroups:95040.a.4752.b1.a1

Other information

Number of subgroups in this conjugacy class$2376$
Möbius function$-2$
Projective image$M_{12}$