Properties

Label 95040.a.2640.b1.b1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{4} \cdot 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:C_4$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,3)(4,11)(5,8)(7,12), (2,12,3,7)(4,5,11,8), (2,8,12)(3,7,5)(4,11,6), (2,7,11)(3,4,12)(5,6,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $M_{12}$
Order: \(95040\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$M_{12}:C_2$, of order \(190080\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$F_9:C_2$
Normal closure:$M_{12}$
Core:$C_1$
Minimal over-subgroups:$A_6$$F_9$$\PSU(3,2)$$\SOPlus(4,2)$
Maximal under-subgroups:$C_3:S_3$$C_4$
Autjugate subgroups:95040.a.2640.b1.a1

Other information

Number of subgroups in this conjugacy class$660$
Möbius function$0$
Projective image$M_{12}$