Subgroup ($H$) information
Description: | $C_4\wr C_2$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Index: | \(2970\)\(\medspace = 2 \cdot 3^{3} \cdot 5 \cdot 11 \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$\langle(1,2)(4,8)(5,7)(6,9), (1,4,2,8)(5,6,7,9), (3,11,12,10)(5,6,7,9), (1,2)(3,12)(4,8)(10,11), (1,5,8,9,2,7,4,6)(10,11)\rangle$
|
Nilpotency class: | $3$ |
Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $M_{12}$ |
Order: | \(95040\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \cdot 11 \) |
Exponent: | \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
Derived length: | $0$ |
The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $M_{12}:C_2$, of order \(190080\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 11 \) |
$\operatorname{Aut}(H)$ | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
$W$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $1485$ |
Möbius function | $0$ |
Projective image | $M_{12}$ |