Properties

Label 95040.a.11880.b1.b1
Order $ 2^{3} $
Index $ 2^{3} \cdot 3^{3} \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(11880\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,9)(3,11)(5,6)(8,10), (1,6)(2,12)(3,10)(4,7)(5,9)(8,11), (2,12)(3,11)(4,7)(5,6)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $M_{12}$
Order: \(95040\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$M_{12}:C_2$, of order \(190080\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$D_4$
Normalizer:$D_4:C_2^2$
Normal closure:$M_{12}$
Core:$C_1$
Minimal over-subgroups:$S_4$$D_4:C_2$$C_2\times D_4$$C_2\times D_4$
Maximal under-subgroups:$C_2^2$$C_4$$C_2^2$
Autjugate subgroups:95040.a.11880.b1.a1

Other information

Number of subgroups in this conjugacy class$2970$
Möbius function$0$
Projective image$M_{12}$