Properties

Label 6912.ha.18.c1
Order $ 2^{7} \cdot 3 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\wr C_2^2\times S_3$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,5)(2,6)(7,12)(8,10)(9,14)(11,13), (7,12)(8,10)(9,14)(11,13), (2,4,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Ambient group ($G$) information

Description: $D_4:C_6^2:D_{12}$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.A_4^2.C_4.C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_2^5:D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$W$$C_2^4:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\wr C_2^2\times S_3$
Normal closure:$Q_8:A_4:S_3^2$
Core:$D_4:C_2^2$
Minimal over-subgroups:$S_3\times C_2^3:S_4$$C_2^3.D_6^2$
Maximal under-subgroups:$C_2^4:D_6$$C_2^3:C_4\times S_3$$C_2^4:D_6$$C_2^3:D_{12}$$D_{12}:C_2^3$$C_3\times C_2\wr C_2^2$$(C_2\times C_{12}):D_4$$C_2^4:D_4$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$(C_2^2\times C_6^2):D_{12}$