Properties

Label 6912.ha.54.d1
Order $ 2^{7} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(8,13)(10,11), (7,12)(8,10)(9,14)(11,13), (4,6)(9,10)(11,12), (7,11)(8,9) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $D_4:C_6^2:D_{12}$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.A_4^2.C_4.C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_2^5.(D_4\times S_4)$, of order \(6144\)\(\medspace = 2^{11} \cdot 3 \)
$W$$C_2^3:D_4$, of order \(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^4.C_2^4$
Normal closure:$Q_8:A_4:S_3^2$
Core:$D_4:C_2^2$
Minimal over-subgroups:$C_2^4:S_4$$C_2\wr C_2^2\times S_3$$C_2^4.C_2^4$
Maximal under-subgroups:$C_2^3:D_4$$C_2^4:C_4$$C_2\wr C_2^2$$D_4:C_2^3$$C_2\wr C_2^2$

Other information

Number of subgroups in this autjugacy class$54$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1$
Projective image$(C_2^2\times C_6^2):D_{12}$