Properties

Label 6912.ha.2.a1
Order $ 2^{7} \cdot 3^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8:A_4:S_3^2$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,5)(2,6)(7,8,9,14,13,12)(10,11), (7,12)(8,10)(9,14)(11,13), (2,4,6), (9,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is normal, maximal, a semidirect factor, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $D_4:C_6^2:D_{12}$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.A_4^2.C_4.C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_3^5:D_6$, of order \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)
$W$$(C_2^2\times C_6^2):D_{12}$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_4:C_6^2:D_{12}$
Complements:$C_2$
Minimal over-subgroups:$D_4:C_6^2:D_{12}$
Maximal under-subgroups:$D_4:C_6^2:C_6$$(C_2\times C_6^2):S_4$$S_3\times C_2^3:S_4$$C_2^3.D_6^2$$C_2\times A_4:S_3^2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1$
Projective image$(C_2^2\times C_6^2):D_{12}$