Properties

Label 6912.ha.6.f1
Order $ 2^{7} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3.D_6^2$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,5)(2,6)(7,12)(8,10)(9,14)(11,13), (7,12)(8,10)(9,14)(11,13), (2,4,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and rational.

Ambient group ($G$) information

Description: $D_4:C_6^2:D_{12}$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.A_4^2.C_4.C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_6^2.(C_2^4\times A_4).C_2^3$
$W$$D_6^2.C_2^3$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_2\times D_6^2).C_2^3$
Normal closure:$Q_8:A_4:S_3^2$
Core:$C_6^2.C_2^4$
Minimal over-subgroups:$Q_8:A_4:S_3^2$$(C_2\times D_6^2).C_2^3$
Maximal under-subgroups:$C_6^2.C_2^4$$D_6^2:C_2^2$$(C_6\times D_4).D_6$$(C_2\times C_{12}):D_{12}$$(C_6\times C_{12}):D_4$$C_2\wr C_2^2\times S_3$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$1$
Projective image$(C_2^2\times C_6^2):D_{12}$