Subgroup ($H$) information
| Description: | $C_5\times C_{10}$ |
| Order: | \(50\)\(\medspace = 2 \cdot 5^{2} \) |
| Index: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rrrr}
9 & 0 & 0 & 0 \\
0 & 9 & 0 & 0 \\
0 & 0 & 9 & 0 \\
0 & 0 & 0 & 9
\end{array}\right), \left(\begin{array}{rrrr}
3 & 6 & 6 & 1 \\
8 & 1 & 3 & 6 \\
9 & 3 & 2 & 5 \\
7 & 9 & 3 & 0
\end{array}\right), \left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 10 & 0 & 0 \\
0 & 0 & 10 & 0 \\
0 & 0 & 0 & 10
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the socle (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 5$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_5\times \GL(2,3):D_{10}$ |
| Order: | \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable.
Quotient group ($Q$) structure
| Description: | $C_2^2\times S_4$ |
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $S_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| Outer Automorphisms: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $3$ |
The quotient is nonabelian, monomial (hence solvable), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2\times A_4\times F_5).C_2^5$ |
| $\operatorname{Aut}(H)$ | $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_4^2$, of order \(16\)\(\medspace = 2^{4} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Möbius function | $-96$ |
| Projective image | $D_{10}\times S_4$ |