Properties

Label 4800.bk.48.f1.a1
Order $ 2^{2} \cdot 5^{2} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_{10}$
Order: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 3 & 8 & 2 & 0 \\ 3 & 7 & 3 & 0 \\ 5 & 3 & 8 & 10 \end{array}\right), \left(\begin{array}{rrrr} 3 & 6 & 6 & 1 \\ 8 & 1 & 3 & 6 \\ 9 & 3 & 2 & 5 \\ 7 & 9 & 3 & 0 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_5\times \GL(2,3):D_{10}$
Order: \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_4\times F_5).C_2^5$
$\operatorname{Aut}(H)$ $C_{10}:C_4^2$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\operatorname{res}(S)$$C_{10}:C_4^2$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_5\times \SD_{16}$
Normalizer:$C_5\times D_{40}:C_2^2$
Normal closure:$D_{20}:C_{10}$
Core:$C_5\times C_{10}$
Minimal over-subgroups:$C_{10}\wr C_2$$C_5\times D_{20}$$C_{10}\times D_{10}$$C_{10}\wr C_2$$D_5\times C_{20}$$D_5\times C_{20}$$C_5\times D_{20}$
Maximal under-subgroups:$C_5\times C_{10}$$C_5\times D_5$$C_2\times C_{10}$$D_{10}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$D_{10}\times S_4$