Properties

Label 4800.bk.24.l1.a1
Order $ 2^{3} \cdot 5^{2} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}\times D_{10}$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 \\ 10 & 0 & 10 & 0 \\ 0 & 1 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 3 & 8 & 2 & 0 \\ 3 & 7 & 3 & 0 \\ 5 & 3 & 8 & 10 \end{array}\right), \left(\begin{array}{rrrr} 3 & 6 & 6 & 1 \\ 8 & 1 & 3 & 6 \\ 9 & 3 & 2 & 5 \\ 7 & 9 & 3 & 0 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_5\times \GL(2,3):D_{10}$
Order: \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_4\times F_5).C_2^5$
$\operatorname{Aut}(H)$ $C_4\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$D_{10}:C_4^2$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2\times D_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{10}^2.C_2^3$
Normal closure:$C_5\times \GL(2,3):D_5$
Core:$C_5\times C_{10}$
Minimal over-subgroups:$C_{10}^2:C_2^2$$C_{20}:D_{10}$$C_{20}:D_{10}$
Maximal under-subgroups:$C_{10}^2$$C_5\times D_{10}$$C_5\times D_{10}$$C_5\times D_{10}$$C_2^2\times C_{10}$$C_2\times D_{10}$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$D_{10}\times S_4$