Properties

Label 4800.bk
Order \( 2^{6} \cdot 3 \cdot 5^{2} \)
Exponent \( 2^{3} \cdot 3 \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 5 \)
$\card{Z(G)}$ \( 2 \cdot 5 \)
$\card{\Aut(G)}$ \( 2^{10} \cdot 3 \cdot 5 \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \)
Perm deg. $26$
Trans deg. $80$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 26 | (17,18,20,22,26)(19,23,24,21,25), (1,2,3,8)(4,7,9,15)(5,6,10,11)(12,16,14,13)(19,24,25,23,21), (17,20,26,18,22)(19,23,24,21,25), (1,4)(2,7)(3,9)(5,14)(6,13)(8,15)(10,12)(11,16)(19,25,21,24,23), (1,3)(5,10)(7,15)(13,16)(17,19)(18,21)(20,23)(22,25)(24,26), (1,3)(2,8)(4,9)(5,10)(6,11)(7,15)(12,14)(13,16)(17,20,26,18,22)(19,23,24,21,25), (1,3)(4,9)(5,13)(6,14)(10,16)(11,12)(19,24,25,23,21), (1,5,3,10)(2,6,8,11)(4,12,9,14)(7,16,15,13)(17,21,22,24,18,23,26,19,20,25), (1,6,15,9,16,2)(3,11,7,4,13,8)(5,12)(10,14)(19,23,24,21,25) >;
 
Copy content gap:G := Group( (17,18,20,22,26)(19,23,24,21,25), (1,2,3,8)(4,7,9,15)(5,6,10,11)(12,16,14,13)(19,24,25,23,21), (17,20,26,18,22)(19,23,24,21,25), (1,4)(2,7)(3,9)(5,14)(6,13)(8,15)(10,12)(11,16)(19,25,21,24,23), (1,3)(5,10)(7,15)(13,16)(17,19)(18,21)(20,23)(22,25)(24,26), (1,3)(2,8)(4,9)(5,10)(6,11)(7,15)(12,14)(13,16)(17,20,26,18,22)(19,23,24,21,25), (1,3)(4,9)(5,13)(6,14)(10,16)(11,12)(19,24,25,23,21), (1,5,3,10)(2,6,8,11)(4,12,9,14)(7,16,15,13)(17,21,22,24,18,23,26,19,20,25), (1,6,15,9,16,2)(3,11,7,4,13,8)(5,12)(10,14)(19,23,24,21,25) );
 
Copy content sage:G = PermutationGroup(['(17,18,20,22,26)(19,23,24,21,25)', '(1,2,3,8)(4,7,9,15)(5,6,10,11)(12,16,14,13)(19,24,25,23,21)', '(17,20,26,18,22)(19,23,24,21,25)', '(1,4)(2,7)(3,9)(5,14)(6,13)(8,15)(10,12)(11,16)(19,25,21,24,23)', '(1,3)(5,10)(7,15)(13,16)(17,19)(18,21)(20,23)(22,25)(24,26)', '(1,3)(2,8)(4,9)(5,10)(6,11)(7,15)(12,14)(13,16)(17,20,26,18,22)(19,23,24,21,25)', '(1,3)(4,9)(5,13)(6,14)(10,16)(11,12)(19,24,25,23,21)', '(1,5,3,10)(2,6,8,11)(4,12,9,14)(7,16,15,13)(17,21,22,24,18,23,26,19,20,25)', '(1,6,15,9,16,2)(3,11,7,4,13,8)(5,12)(10,14)(19,23,24,21,25)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(12311680077605695455695248057865064001048852265247678724404778506285967284629717251,4800)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7;
 

Group information

Description:$C_5\times \GL(2,3):D_{10}$
Order: \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$(C_2\times A_4\times F_5).C_2^5$, of order \(15360\)\(\medspace = 2^{10} \cdot 3 \cdot 5 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 6, $C_3$, $C_5$ x 2
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 8 10 12 15 20 30 40 60
Elements 1 127 8 112 24 104 144 1048 80 192 688 896 1056 320 4800
Conjugacy classes   1 7 1 5 14 3 5 78 1 14 40 42 60 4 275
Divisions 1 7 1 5 4 3 4 21 1 4 11 11 10 1 84
Autjugacy classes 1 7 1 5 3 3 4 15 1 3 9 7 8 1 68

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 8 12 16 24 32
Irr. complex chars.   40 60 40 70 40 25 0 0 0 0 275
Irr. rational chars. 8 4 8 12 0 16 12 4 8 12 84

Minimal presentations

Permutation degree:$26$
Transitive degree:$80$
Rank: $3$
Inequivalent generating triples: $1874880$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 4 8 32
Arbitrary 4 8 16

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e \mid a^{10}=b^{2}=c^{6}=e^{20}=[a,b]=[a,d]=[a,e]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([9, -2, -5, -2, -2, -3, -2, 2, -2, -5, 18, 52563, 52212, 9021, 102, 382, 13631, 3596, 4901, 1130, 2292, 10995, 4389, 1437, 186, 15586, 214, 15587]); a,b,c,d,e := Explode([G.1, G.3, G.4, G.6, G.7]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "e", "e2", "e4"]);
 
Copy content gap:G := PcGroupCode(12311680077605695455695248057865064001048852265247678724404778506285967284629717251,4800); a := G.1; b := G.3; c := G.4; d := G.6; e := G.7;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(12311680077605695455695248057865064001048852265247678724404778506285967284629717251,4800)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(12311680077605695455695248057865064001048852265247678724404778506285967284629717251,4800)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7;
 
Permutation group:Degree $26$ $\langle(17,18,20,22,26)(19,23,24,21,25), (1,2,3,8)(4,7,9,15)(5,6,10,11)(12,16,14,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 26 | (17,18,20,22,26)(19,23,24,21,25), (1,2,3,8)(4,7,9,15)(5,6,10,11)(12,16,14,13)(19,24,25,23,21), (17,20,26,18,22)(19,23,24,21,25), (1,4)(2,7)(3,9)(5,14)(6,13)(8,15)(10,12)(11,16)(19,25,21,24,23), (1,3)(5,10)(7,15)(13,16)(17,19)(18,21)(20,23)(22,25)(24,26), (1,3)(2,8)(4,9)(5,10)(6,11)(7,15)(12,14)(13,16)(17,20,26,18,22)(19,23,24,21,25), (1,3)(4,9)(5,13)(6,14)(10,16)(11,12)(19,24,25,23,21), (1,5,3,10)(2,6,8,11)(4,12,9,14)(7,16,15,13)(17,21,22,24,18,23,26,19,20,25), (1,6,15,9,16,2)(3,11,7,4,13,8)(5,12)(10,14)(19,23,24,21,25) >;
 
Copy content gap:G := Group( (17,18,20,22,26)(19,23,24,21,25), (1,2,3,8)(4,7,9,15)(5,6,10,11)(12,16,14,13)(19,24,25,23,21), (17,20,26,18,22)(19,23,24,21,25), (1,4)(2,7)(3,9)(5,14)(6,13)(8,15)(10,12)(11,16)(19,25,21,24,23), (1,3)(5,10)(7,15)(13,16)(17,19)(18,21)(20,23)(22,25)(24,26), (1,3)(2,8)(4,9)(5,10)(6,11)(7,15)(12,14)(13,16)(17,20,26,18,22)(19,23,24,21,25), (1,3)(4,9)(5,13)(6,14)(10,16)(11,12)(19,24,25,23,21), (1,5,3,10)(2,6,8,11)(4,12,9,14)(7,16,15,13)(17,21,22,24,18,23,26,19,20,25), (1,6,15,9,16,2)(3,11,7,4,13,8)(5,12)(10,14)(19,23,24,21,25) );
 
Copy content sage:G = PermutationGroup(['(17,18,20,22,26)(19,23,24,21,25)', '(1,2,3,8)(4,7,9,15)(5,6,10,11)(12,16,14,13)(19,24,25,23,21)', '(17,20,26,18,22)(19,23,24,21,25)', '(1,4)(2,7)(3,9)(5,14)(6,13)(8,15)(10,12)(11,16)(19,25,21,24,23)', '(1,3)(5,10)(7,15)(13,16)(17,19)(18,21)(20,23)(22,25)(24,26)', '(1,3)(2,8)(4,9)(5,10)(6,11)(7,15)(12,14)(13,16)(17,20,26,18,22)(19,23,24,21,25)', '(1,3)(4,9)(5,13)(6,14)(10,16)(11,12)(19,24,25,23,21)', '(1,5,3,10)(2,6,8,11)(4,12,9,14)(7,16,15,13)(17,21,22,24,18,23,26,19,20,25)', '(1,6,15,9,16,2)(3,11,7,4,13,8)(5,12)(10,14)(19,23,24,21,25)'])
 
Matrix group:$\left\langle \left(\begin{array}{rrrr} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{array}\right), \left(\begin{array}{rrrr} 0 & 7 & 0 & 8 \\ 3 & 1 & 5 & 3 \\ 3 & 6 & 5 & 1 \\ 10 & 5 & 7 & 5 \end{array}\right), \left(\begin{array}{rrrr} 7 & 10 & 10 & 9 \\ 6 & 0 & 5 & 10 \\ 4 & 5 & 9 & 1 \\ 8 & 4 & 5 & 2 \end{array}\right), \left(\begin{array}{rrrr} 5 & 10 & 10 & 9 \\ 6 & 9 & 5 & 10 \\ 4 & 5 & 7 & 1 \\ 8 & 4 & 5 & 0 \end{array}\right), \left(\begin{array}{rrrr} 4 & 6 & 3 & 1 \\ 9 & 7 & 6 & 4 \\ 4 & 8 & 8 & 6 \\ 4 & 6 & 2 & 3 \end{array}\right), \left(\begin{array}{rrrr} 3 & 4 & 10 & 0 \\ 1 & 8 & 0 & 1 \\ 1 & 0 & 8 & 4 \\ 0 & 10 & 1 & 3 \end{array}\right), \left(\begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 8 \end{array}\right), \left(\begin{array}{rrrr} 0 & 8 & 4 & 3 \\ 1 & 10 & 4 & 0 \\ 4 & 9 & 6 & 6 \\ 3 & 8 & 2 & 1 \end{array}\right), \left(\begin{array}{rrrr} 2 & 4 & 1 & 3 \\ 5 & 0 & 6 & 1 \\ 7 & 4 & 0 & 7 \\ 3 & 7 & 6 & 9 \end{array}\right) \right\rangle \subseteq \GL_{4}(\F_{11})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 4, GF(11) | [[3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3], [0, 7, 0, 8, 3, 1, 5, 3, 3, 6, 5, 1, 10, 5, 7, 5], [7, 10, 10, 9, 6, 0, 5, 10, 4, 5, 9, 1, 8, 4, 5, 2], [5, 10, 10, 9, 6, 9, 5, 10, 4, 5, 7, 1, 8, 4, 5, 0], [4, 6, 3, 1, 9, 7, 6, 4, 4, 8, 8, 6, 4, 6, 2, 3], [3, 4, 10, 0, 1, 8, 0, 1, 1, 0, 8, 4, 0, 10, 1, 3], [8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8], [0, 8, 4, 3, 1, 10, 4, 0, 4, 9, 6, 6, 3, 8, 2, 1], [2, 4, 1, 3, 5, 0, 6, 1, 7, 4, 0, 7, 3, 7, 6, 9]] >;
 
Copy content gap:G := Group([[[ Z(11)^8, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^8, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^8, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^8 ]], [[ 0*Z(11), Z(11)^7, 0*Z(11), Z(11)^3 ], [ Z(11)^8, Z(11)^0, Z(11)^4, Z(11)^8 ], [ Z(11)^8, Z(11)^9, Z(11)^4, Z(11)^0 ], [ Z(11)^5, Z(11)^4, Z(11)^7, Z(11)^4 ]], [[ Z(11)^7, Z(11)^5, Z(11)^5, Z(11)^6 ], [ Z(11)^9, 0*Z(11), Z(11)^4, Z(11)^5 ], [ Z(11)^2, Z(11)^4, Z(11)^6, Z(11)^0 ], [ Z(11)^3, Z(11)^2, Z(11)^4, Z(11) ]], [[ Z(11)^4, Z(11)^5, Z(11)^5, Z(11)^6 ], [ Z(11)^9, Z(11)^6, Z(11)^4, Z(11)^5 ], [ Z(11)^2, Z(11)^4, Z(11)^7, Z(11)^0 ], [ Z(11)^3, Z(11)^2, Z(11)^4, 0*Z(11) ]], [[ Z(11)^2, Z(11)^9, Z(11)^8, Z(11)^0 ], [ Z(11)^6, Z(11)^7, Z(11)^9, Z(11)^2 ], [ Z(11)^2, Z(11)^3, Z(11)^3, Z(11)^9 ], [ Z(11)^2, Z(11)^9, Z(11), Z(11)^8 ]], [[ Z(11)^8, Z(11)^2, Z(11)^5, 0*Z(11) ], [ Z(11)^0, Z(11)^3, 0*Z(11), Z(11)^0 ], [ Z(11)^0, 0*Z(11), Z(11)^3, Z(11)^2 ], [ 0*Z(11), Z(11)^5, Z(11)^0, Z(11)^8 ]], [[ Z(11)^3, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^3, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^3, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^3 ]], [[ 0*Z(11), Z(11)^3, Z(11)^2, Z(11)^8 ], [ Z(11)^0, Z(11)^5, Z(11)^2, 0*Z(11) ], [ Z(11)^2, Z(11)^6, Z(11)^9, Z(11)^9 ], [ Z(11)^8, Z(11)^3, Z(11), Z(11)^0 ]], [[ Z(11), Z(11)^2, Z(11)^0, Z(11)^8 ], [ Z(11)^4, 0*Z(11), Z(11)^9, Z(11)^0 ], [ Z(11)^7, Z(11)^2, 0*Z(11), Z(11)^7 ], [ Z(11)^8, Z(11)^7, Z(11)^9, Z(11)^6 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(11), 4, 4) G = MatrixGroup([MS([[3, 0, 0, 0], [0, 3, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]]), MS([[0, 7, 0, 8], [3, 1, 5, 3], [3, 6, 5, 1], [10, 5, 7, 5]]), MS([[7, 10, 10, 9], [6, 0, 5, 10], [4, 5, 9, 1], [8, 4, 5, 2]]), MS([[5, 10, 10, 9], [6, 9, 5, 10], [4, 5, 7, 1], [8, 4, 5, 0]]), MS([[4, 6, 3, 1], [9, 7, 6, 4], [4, 8, 8, 6], [4, 6, 2, 3]]), MS([[3, 4, 10, 0], [1, 8, 0, 1], [1, 0, 8, 4], [0, 10, 1, 3]]), MS([[8, 0, 0, 0], [0, 8, 0, 0], [0, 0, 8, 0], [0, 0, 0, 8]]), MS([[0, 8, 4, 3], [1, 10, 4, 0], [4, 9, 6, 6], [3, 8, 2, 1]]), MS([[2, 4, 1, 3], [5, 0, 6, 1], [7, 4, 0, 7], [3, 7, 6, 9]])])
 
Direct product: $C_5$ $\, \times\, $ $(\GL(2,3):D_{10})$
Semidirect product: $(Q_8.D_{30})$ $\,\rtimes\,$ $C_{10}$ $(C_{20}.D_{10})$ $\,\rtimes\,$ $D_6$ $(D_{20}:C_{10})$ $\,\rtimes\,$ $D_6$ $(C_{10}^2.S_4)$ $\,\rtimes\,$ $C_2$ all 44
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $D_{10}$ . $(C_{10}\times S_4)$ $C_{10}$ . $(D_{10}\times S_4)$ $Q_8$ . $(C_{30}:D_{10})$ $(C_{10}\wr C_2)$ . $S_4$ all 22

Elements of the group are displayed as matrices in $\GL_{4}(\F_{11})$.

Homology

Abelianization: $C_{2}^{2} \times C_{10} \simeq C_{2}^{3} \times C_{5}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 6608 subgroups in 710 conjugacy classes, 74 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_{10}$ $G/Z \simeq$ $D_{10}\times S_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_5\times \SL(2,3)$ $G/G' \simeq$ $C_2^2\times C_{10}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $(C_5^2\times A_4).C_2^3$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_4.C_{10}^2$ $G/\operatorname{Fit} \simeq$ $D_6$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_5\times \GL(2,3):D_{10}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_5\times C_{10}$ $G/\operatorname{soc} \simeq$ $C_2^2\times S_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $D_8:C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^2$

Subgroup diagram and profile

Series

Derived series $C_5\times \GL(2,3):D_{10}$ $\rhd$ $C_5\times \SL(2,3)$ $\rhd$ $Q_8$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_5\times \GL(2,3):D_{10}$ $\rhd$ $C_5\times \GL(2,3):D_5$ $\rhd$ $C_5\times \SL(2,3):D_5$ $\rhd$ $C_5^2\times \SL(2,3)$ $\rhd$ $C_5\times \SL(2,3)$ $\rhd$ $C_5\times Q_8$ $\rhd$ $Q_8$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_5\times \GL(2,3):D_{10}$ $\rhd$ $C_5\times \SL(2,3)$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_{10}$ $\lhd$ $C_2\times C_{10}$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $275 \times 275$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $84 \times 84$ rational character table.