Properties

Label 4800.bk.480.b1.a1
Order $ 2 \cdot 5 $
Index $ 2^{5} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 3 & 6 & 6 & 1 \\ 8 & 1 & 3 & 6 \\ 9 & 3 & 2 & 5 \\ 7 & 9 & 3 & 0 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_5\times \GL(2,3):D_{10}$
Order: \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_2\times C_{10}\times S_4$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Automorphism Group: $C_4\times S_4^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Outer Automorphisms: $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_4\times F_5).C_2^5$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$\SL(2,3):C_{10}^2$
Normalizer:$C_5\times \GL(2,3):D_{10}$
Minimal over-subgroups:$C_5\times C_{10}$$C_{30}$$C_2\times C_{10}$$D_{10}$$C_5:C_4$$C_2\times C_{10}$$C_2\times C_{10}$$D_{10}$$D_{10}$$C_{20}$$C_{20}$$C_5:C_4$$C_5:C_4$
Maximal under-subgroups:$C_5$$C_2$

Other information

Möbius function$96$
Projective image not computed