Properties

Label 4800.bk.32.a1.a1
Order $ 2 \cdot 3 \cdot 5^{2} $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{30}$
Order: \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 6 & 8 & 8 & 0 \\ 6 & 3 & 8 & 8 \\ 8 & 3 & 9 & 3 \\ 8 & 8 & 5 & 6 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 3 & 6 & 6 & 1 \\ 8 & 1 & 3 & 6 \\ 9 & 3 & 2 & 5 \\ 7 & 9 & 3 & 0 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 5$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_5\times \GL(2,3):D_{10}$
Order: \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_4\times F_5).C_2^5$
$\operatorname{Aut}(H)$ $C_2\times \GL(2,5)$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2\times C_4^2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{10}\times C_{30}$
Normalizer:$C_{10}^2:D_6$
Normal closure:$C_5^2\times \SL(2,3)$
Core:$C_5\times C_{10}$
Minimal over-subgroups:$C_5^2\times \SL(2,3)$$C_{10}\times C_{30}$$C_{15}\times D_{10}$$D_6\times C_5^2$$D_6\times C_5^2$$C_5\times D_{30}$$C_5:C_{60}$$C_{15}:C_{20}$
Maximal under-subgroups:$C_5\times C_{15}$$C_5\times C_{10}$$C_{30}$$C_{30}$$C_{30}$$C_{30}$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$8$
Projective image$D_{10}\times S_4$