Properties

Label 4199040.a.81.a1
Order $ 2^{7} \cdot 3^{4} \cdot 5 $
Index $ 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\Sp(4,3)$
Order: \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
Index: \(81\)\(\medspace = 3^{4} \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Generators: $\langle(4,21,17)(5,19,18)(6,20,16)(7,11,24)(8,12,22)(9,10,23)(28,41,54)(29,42,52) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $0$

The subgroup is maximal, nonabelian, and quasisimple (hence nonsolvable and perfect).

Ambient group ($G$) information

Description: $C_3^4:\Sp(4,3)$
Order: \(4199040\)\(\medspace = 2^{7} \cdot 3^{8} \cdot 5 \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \)
$\operatorname{Aut}(H)$ $\SO(5,3)$, of order \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
$W$$\SU(4,2)$, of order \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$\Sp(4,3)$
Normal closure:$C_3^4:\Sp(4,3)$
Core:$C_1$
Minimal over-subgroups:$C_3^4:\Sp(4,3)$
Maximal under-subgroups:$C_2.C_2^4:A_5$$\SL(2,9):C_2$$C_2\times \Unitary(3,2)$$C_3^3:\GL(2,3)$$\SL(2,3)\wr C_2$

Other information

Number of subgroups in this autjugacy class$81$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4:\Sp(4,3)$