Properties

Label 4199040.a.2916.a1
Order $ 2^{5} \cdot 3^{2} \cdot 5 $
Index $ 2^{2} \cdot 3^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,9):C_2$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Index: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\langle(1,49)(2,51)(3,50)(4,46)(5,48)(6,47)(7,52)(8,54)(9,53)(10,40)(11,42)(12,41) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $C_3^4:\Sp(4,3)$
Order: \(4199040\)\(\medspace = 2^{7} \cdot 3^{8} \cdot 5 \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times S_6$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
$W$$S_6$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$\SL(2,9):C_2$
Normal closure:$C_3^4:\Sp(4,3)$
Core:$C_1$
Minimal over-subgroups:$\ASigmaL(2,9)$$\Sp(4,3)$
Maximal under-subgroups:$\SL(2,9)$$\SL(2,5):C_2$$C_2.S_5$$C_3^2:\SD_{16}$$C_4.S_4$$\GL(2,3):C_2$

Other information

Number of subgroups in this autjugacy class$2916$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4:\Sp(4,3)$