Properties

Label 8398080.j
Order \( 2^{8} \cdot 3^{8} \cdot 5 \)
Exponent \( 2^{3} \cdot 3^{2} \cdot 5 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{8} \cdot 3^{8} \cdot 5 \)
$\card{\mathrm{Out}(G)}$ \( 1 \)
Perm deg. $81$
Trans deg. $81$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 81 | (1,2,6)(3,7,21)(4,8,17)(5,9,22)(10,35,74)(11,40,55)(12,25,65)(13,26,57)(14,27,39)(15,29,58)(16,30,59)(18,33,50)(19,56,38)(20,44,64)(23,68,46)(24,49,80)(28,32,75)(31,48,71)(34,73,36)(37,45,43)(41,66,77)(42,72,52)(47,70,79)(51,67,76)(53,62,60)(54,69,61)(63,81,78), (1,3,12)(2,7,25)(4,13,44)(5,14,45)(6,21,65)(8,26,64)(9,27,43)(10,36,28)(11,41,23)(15,47,49)(16,48,81)(17,57,20)(18,51,62)(19,61,52)(22,39,37)(24,58,79)(29,70,80)(30,71,78)(31,63,59)(32,35,34)(33,67,60)(38,69,72)(40,66,68)(42,56,54)(46,55,77)(50,76,53)(73,75,74), (1,4,15)(2,8,29)(3,13,47)(5,16,34)(6,17,58)(7,26,70)(9,30,73)(10,37,63)(11,42,67)(12,44,49)(14,48,32)(18,46,61)(19,62,77)(20,24,65)(21,57,79)(22,59,36)(23,54,33)(25,64,80)(27,71,75)(28,39,31)(35,45,81)(38,53,66)(40,72,76)(41,56,60)(43,78,74)(50,68,69)(51,55,52), (1,5,18)(2,9,33)(3,14,51)(4,16,46)(6,22,50)(7,27,67)(8,30,23)(10,38,24)(11,26,71)(12,45,62)(13,48,55)(15,34,61)(17,59,68)(19,49,35)(20,63,66)(21,39,76)(25,43,60)(28,72,79)(29,73,54)(31,40,57)(32,52,47)(36,69,58)(37,53,65)(41,64,78)(42,70,75)(44,81,77)(56,80,74), (1,3)(2,10,30,65,11,38,7,28,71,21,41,72,25,36,78,6,23,69)(4,15,44,47,13,49)(5,19,35,51,81,77)(8,31,74,24,56,68,26,59,73,79,54,66,64,63,75,58,42,40)(9,17,60,53,29,22,27,20,33,76,70,37,43,57,67,50,80,39)(14,52,34,18,16,55)(32,62,48,46,45,61), (1,5,20,64,51,71,69,33,65,37,26,13,50,16,56,62,7,27,4,17,60,63,52,76)(2,11,43,18,42,44,36,79,12,46,14,53,61,57,74,29,21,66,22,67,38,8,32,49)(3,15,54,35,77,55,47,30,6,24,19,28,40,68,58,81,25,70,72,73,23,41,80,31)(9,34,45,10,39,75)(48,78,59) >;
 
Copy content gap:G := Group( (1,2,6)(3,7,21)(4,8,17)(5,9,22)(10,35,74)(11,40,55)(12,25,65)(13,26,57)(14,27,39)(15,29,58)(16,30,59)(18,33,50)(19,56,38)(20,44,64)(23,68,46)(24,49,80)(28,32,75)(31,48,71)(34,73,36)(37,45,43)(41,66,77)(42,72,52)(47,70,79)(51,67,76)(53,62,60)(54,69,61)(63,81,78), (1,3,12)(2,7,25)(4,13,44)(5,14,45)(6,21,65)(8,26,64)(9,27,43)(10,36,28)(11,41,23)(15,47,49)(16,48,81)(17,57,20)(18,51,62)(19,61,52)(22,39,37)(24,58,79)(29,70,80)(30,71,78)(31,63,59)(32,35,34)(33,67,60)(38,69,72)(40,66,68)(42,56,54)(46,55,77)(50,76,53)(73,75,74), (1,4,15)(2,8,29)(3,13,47)(5,16,34)(6,17,58)(7,26,70)(9,30,73)(10,37,63)(11,42,67)(12,44,49)(14,48,32)(18,46,61)(19,62,77)(20,24,65)(21,57,79)(22,59,36)(23,54,33)(25,64,80)(27,71,75)(28,39,31)(35,45,81)(38,53,66)(40,72,76)(41,56,60)(43,78,74)(50,68,69)(51,55,52), (1,5,18)(2,9,33)(3,14,51)(4,16,46)(6,22,50)(7,27,67)(8,30,23)(10,38,24)(11,26,71)(12,45,62)(13,48,55)(15,34,61)(17,59,68)(19,49,35)(20,63,66)(21,39,76)(25,43,60)(28,72,79)(29,73,54)(31,40,57)(32,52,47)(36,69,58)(37,53,65)(41,64,78)(42,70,75)(44,81,77)(56,80,74), (1,3)(2,10,30,65,11,38,7,28,71,21,41,72,25,36,78,6,23,69)(4,15,44,47,13,49)(5,19,35,51,81,77)(8,31,74,24,56,68,26,59,73,79,54,66,64,63,75,58,42,40)(9,17,60,53,29,22,27,20,33,76,70,37,43,57,67,50,80,39)(14,52,34,18,16,55)(32,62,48,46,45,61), (1,5,20,64,51,71,69,33,65,37,26,13,50,16,56,62,7,27,4,17,60,63,52,76)(2,11,43,18,42,44,36,79,12,46,14,53,61,57,74,29,21,66,22,67,38,8,32,49)(3,15,54,35,77,55,47,30,6,24,19,28,40,68,58,81,25,70,72,73,23,41,80,31)(9,34,45,10,39,75)(48,78,59) );
 
Copy content sage:G = PermutationGroup(['(1,2,6)(3,7,21)(4,8,17)(5,9,22)(10,35,74)(11,40,55)(12,25,65)(13,26,57)(14,27,39)(15,29,58)(16,30,59)(18,33,50)(19,56,38)(20,44,64)(23,68,46)(24,49,80)(28,32,75)(31,48,71)(34,73,36)(37,45,43)(41,66,77)(42,72,52)(47,70,79)(51,67,76)(53,62,60)(54,69,61)(63,81,78)', '(1,3,12)(2,7,25)(4,13,44)(5,14,45)(6,21,65)(8,26,64)(9,27,43)(10,36,28)(11,41,23)(15,47,49)(16,48,81)(17,57,20)(18,51,62)(19,61,52)(22,39,37)(24,58,79)(29,70,80)(30,71,78)(31,63,59)(32,35,34)(33,67,60)(38,69,72)(40,66,68)(42,56,54)(46,55,77)(50,76,53)(73,75,74)', '(1,4,15)(2,8,29)(3,13,47)(5,16,34)(6,17,58)(7,26,70)(9,30,73)(10,37,63)(11,42,67)(12,44,49)(14,48,32)(18,46,61)(19,62,77)(20,24,65)(21,57,79)(22,59,36)(23,54,33)(25,64,80)(27,71,75)(28,39,31)(35,45,81)(38,53,66)(40,72,76)(41,56,60)(43,78,74)(50,68,69)(51,55,52)', '(1,5,18)(2,9,33)(3,14,51)(4,16,46)(6,22,50)(7,27,67)(8,30,23)(10,38,24)(11,26,71)(12,45,62)(13,48,55)(15,34,61)(17,59,68)(19,49,35)(20,63,66)(21,39,76)(25,43,60)(28,72,79)(29,73,54)(31,40,57)(32,52,47)(36,69,58)(37,53,65)(41,64,78)(42,70,75)(44,81,77)(56,80,74)', '(1,3)(2,10,30,65,11,38,7,28,71,21,41,72,25,36,78,6,23,69)(4,15,44,47,13,49)(5,19,35,51,81,77)(8,31,74,24,56,68,26,59,73,79,54,66,64,63,75,58,42,40)(9,17,60,53,29,22,27,20,33,76,70,37,43,57,67,50,80,39)(14,52,34,18,16,55)(32,62,48,46,45,61)', '(1,5,20,64,51,71,69,33,65,37,26,13,50,16,56,62,7,27,4,17,60,63,52,76)(2,11,43,18,42,44,36,79,12,46,14,53,61,57,74,29,21,66,22,67,38,8,32,49)(3,15,54,35,77,55,47,30,6,24,19,28,40,68,58,81,25,70,72,73,23,41,80,31)(9,34,45,10,39,75)(48,78,59)'])
 

Group information

Description:$C_3^3:S_3.\SO(5,3)$
Order: \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 2, $C_3$ x 4, $\SU(4,2)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 8 9 10 12 18 20 24
Elements 1 10611 64880 98172 419904 1432080 1224720 466560 419904 1555200 466560 839808 1399680 8398080
Conjugacy classes   1 3 9 4 1 15 6 2 1 7 1 2 4 56
Divisions 1 3 9 4 1 15 4 2 1 7 1 1 2 51
Autjugacy classes 1 3 9 4 1 15 6 2 1 7 1 2 4 56

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 6 8 10 15 20 24 30 40 60 64 72 80 81 90 120 128 160 240 320 480 640 960 1280 1440
Irr. complex chars.   2 2 1 1 4 5 2 2 2 5 4 1 5 2 1 1 0 3 2 1 3 2 3 1 1 56
Irr. rational chars. 2 2 1 1 4 3 2 2 3 3 2 1 3 2 1 2 1 2 2 2 3 2 3 1 1 51

Minimal presentations

Permutation degree:$81$
Transitive degree:$81$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 80 80 80
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $81$ $\langle(1,2,6)(3,7,21)(4,8,17)(5,9,22)(10,35,74)(11,40,55)(12,25,65)(13,26,57) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 81 | (1,2,6)(3,7,21)(4,8,17)(5,9,22)(10,35,74)(11,40,55)(12,25,65)(13,26,57)(14,27,39)(15,29,58)(16,30,59)(18,33,50)(19,56,38)(20,44,64)(23,68,46)(24,49,80)(28,32,75)(31,48,71)(34,73,36)(37,45,43)(41,66,77)(42,72,52)(47,70,79)(51,67,76)(53,62,60)(54,69,61)(63,81,78), (1,3,12)(2,7,25)(4,13,44)(5,14,45)(6,21,65)(8,26,64)(9,27,43)(10,36,28)(11,41,23)(15,47,49)(16,48,81)(17,57,20)(18,51,62)(19,61,52)(22,39,37)(24,58,79)(29,70,80)(30,71,78)(31,63,59)(32,35,34)(33,67,60)(38,69,72)(40,66,68)(42,56,54)(46,55,77)(50,76,53)(73,75,74), (1,4,15)(2,8,29)(3,13,47)(5,16,34)(6,17,58)(7,26,70)(9,30,73)(10,37,63)(11,42,67)(12,44,49)(14,48,32)(18,46,61)(19,62,77)(20,24,65)(21,57,79)(22,59,36)(23,54,33)(25,64,80)(27,71,75)(28,39,31)(35,45,81)(38,53,66)(40,72,76)(41,56,60)(43,78,74)(50,68,69)(51,55,52), (1,5,18)(2,9,33)(3,14,51)(4,16,46)(6,22,50)(7,27,67)(8,30,23)(10,38,24)(11,26,71)(12,45,62)(13,48,55)(15,34,61)(17,59,68)(19,49,35)(20,63,66)(21,39,76)(25,43,60)(28,72,79)(29,73,54)(31,40,57)(32,52,47)(36,69,58)(37,53,65)(41,64,78)(42,70,75)(44,81,77)(56,80,74), (1,3)(2,10,30,65,11,38,7,28,71,21,41,72,25,36,78,6,23,69)(4,15,44,47,13,49)(5,19,35,51,81,77)(8,31,74,24,56,68,26,59,73,79,54,66,64,63,75,58,42,40)(9,17,60,53,29,22,27,20,33,76,70,37,43,57,67,50,80,39)(14,52,34,18,16,55)(32,62,48,46,45,61), (1,5,20,64,51,71,69,33,65,37,26,13,50,16,56,62,7,27,4,17,60,63,52,76)(2,11,43,18,42,44,36,79,12,46,14,53,61,57,74,29,21,66,22,67,38,8,32,49)(3,15,54,35,77,55,47,30,6,24,19,28,40,68,58,81,25,70,72,73,23,41,80,31)(9,34,45,10,39,75)(48,78,59) >;
 
Copy content gap:G := Group( (1,2,6)(3,7,21)(4,8,17)(5,9,22)(10,35,74)(11,40,55)(12,25,65)(13,26,57)(14,27,39)(15,29,58)(16,30,59)(18,33,50)(19,56,38)(20,44,64)(23,68,46)(24,49,80)(28,32,75)(31,48,71)(34,73,36)(37,45,43)(41,66,77)(42,72,52)(47,70,79)(51,67,76)(53,62,60)(54,69,61)(63,81,78), (1,3,12)(2,7,25)(4,13,44)(5,14,45)(6,21,65)(8,26,64)(9,27,43)(10,36,28)(11,41,23)(15,47,49)(16,48,81)(17,57,20)(18,51,62)(19,61,52)(22,39,37)(24,58,79)(29,70,80)(30,71,78)(31,63,59)(32,35,34)(33,67,60)(38,69,72)(40,66,68)(42,56,54)(46,55,77)(50,76,53)(73,75,74), (1,4,15)(2,8,29)(3,13,47)(5,16,34)(6,17,58)(7,26,70)(9,30,73)(10,37,63)(11,42,67)(12,44,49)(14,48,32)(18,46,61)(19,62,77)(20,24,65)(21,57,79)(22,59,36)(23,54,33)(25,64,80)(27,71,75)(28,39,31)(35,45,81)(38,53,66)(40,72,76)(41,56,60)(43,78,74)(50,68,69)(51,55,52), (1,5,18)(2,9,33)(3,14,51)(4,16,46)(6,22,50)(7,27,67)(8,30,23)(10,38,24)(11,26,71)(12,45,62)(13,48,55)(15,34,61)(17,59,68)(19,49,35)(20,63,66)(21,39,76)(25,43,60)(28,72,79)(29,73,54)(31,40,57)(32,52,47)(36,69,58)(37,53,65)(41,64,78)(42,70,75)(44,81,77)(56,80,74), (1,3)(2,10,30,65,11,38,7,28,71,21,41,72,25,36,78,6,23,69)(4,15,44,47,13,49)(5,19,35,51,81,77)(8,31,74,24,56,68,26,59,73,79,54,66,64,63,75,58,42,40)(9,17,60,53,29,22,27,20,33,76,70,37,43,57,67,50,80,39)(14,52,34,18,16,55)(32,62,48,46,45,61), (1,5,20,64,51,71,69,33,65,37,26,13,50,16,56,62,7,27,4,17,60,63,52,76)(2,11,43,18,42,44,36,79,12,46,14,53,61,57,74,29,21,66,22,67,38,8,32,49)(3,15,54,35,77,55,47,30,6,24,19,28,40,68,58,81,25,70,72,73,23,41,80,31)(9,34,45,10,39,75)(48,78,59) );
 
Copy content sage:G = PermutationGroup(['(1,2,6)(3,7,21)(4,8,17)(5,9,22)(10,35,74)(11,40,55)(12,25,65)(13,26,57)(14,27,39)(15,29,58)(16,30,59)(18,33,50)(19,56,38)(20,44,64)(23,68,46)(24,49,80)(28,32,75)(31,48,71)(34,73,36)(37,45,43)(41,66,77)(42,72,52)(47,70,79)(51,67,76)(53,62,60)(54,69,61)(63,81,78)', '(1,3,12)(2,7,25)(4,13,44)(5,14,45)(6,21,65)(8,26,64)(9,27,43)(10,36,28)(11,41,23)(15,47,49)(16,48,81)(17,57,20)(18,51,62)(19,61,52)(22,39,37)(24,58,79)(29,70,80)(30,71,78)(31,63,59)(32,35,34)(33,67,60)(38,69,72)(40,66,68)(42,56,54)(46,55,77)(50,76,53)(73,75,74)', '(1,4,15)(2,8,29)(3,13,47)(5,16,34)(6,17,58)(7,26,70)(9,30,73)(10,37,63)(11,42,67)(12,44,49)(14,48,32)(18,46,61)(19,62,77)(20,24,65)(21,57,79)(22,59,36)(23,54,33)(25,64,80)(27,71,75)(28,39,31)(35,45,81)(38,53,66)(40,72,76)(41,56,60)(43,78,74)(50,68,69)(51,55,52)', '(1,5,18)(2,9,33)(3,14,51)(4,16,46)(6,22,50)(7,27,67)(8,30,23)(10,38,24)(11,26,71)(12,45,62)(13,48,55)(15,34,61)(17,59,68)(19,49,35)(20,63,66)(21,39,76)(25,43,60)(28,72,79)(29,73,54)(31,40,57)(32,52,47)(36,69,58)(37,53,65)(41,64,78)(42,70,75)(44,81,77)(56,80,74)', '(1,3)(2,10,30,65,11,38,7,28,71,21,41,72,25,36,78,6,23,69)(4,15,44,47,13,49)(5,19,35,51,81,77)(8,31,74,24,56,68,26,59,73,79,54,66,64,63,75,58,42,40)(9,17,60,53,29,22,27,20,33,76,70,37,43,57,67,50,80,39)(14,52,34,18,16,55)(32,62,48,46,45,61)', '(1,5,20,64,51,71,69,33,65,37,26,13,50,16,56,62,7,27,4,17,60,63,52,76)(2,11,43,18,42,44,36,79,12,46,14,53,61,57,74,29,21,66,22,67,38,8,32,49)(3,15,54,35,77,55,47,30,6,24,19,28,40,68,58,81,25,70,72,73,23,41,80,31)(9,34,45,10,39,75)(48,78,59)'])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^3:S_3)$ . $\SO(5,3)$ $(C_3^4:\Sp(4,3))$ . $C_2$ $C_3^4$ . $(C_2.\SU(4,2).C_2)$ more information
Aut. group: $\Aut(C_3^3:C_3^2)$ $\Aut((C_3\times \He_3):S_3)$ $\Aut(C_6.C_3^4)$ $\Aut(C_3^4:\Sp(4,3))$

Elements of the group are displayed as permutations of degree 81.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 5 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_3^4:\Sp(4,3)$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4.C_3^3.C_3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $56 \times 56$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $51 \times 51$ rational character table.