# Group 8398080.j downloaded from the LMFDB on 10 September 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPerm := Group( (1,2,6)(3,7,21)(4,8,17)(5,9,22)(10,35,74)(11,40,55)(12,25,65)(13,26,57)(14,27,39)(15,29,58)(16,30,59)(18,33,50)(19,56,38)(20,44,64)(23,68,46)(24,49,80)(28,32,75)(31,48,71)(34,73,36)(37,45,43)(41,66,77)(42,72,52)(47,70,79)(51,67,76)(53,62,60)(54,69,61)(63,81,78), (1,3,12)(2,7,25)(4,13,44)(5,14,45)(6,21,65)(8,26,64)(9,27,43)(10,36,28)(11,41,23)(15,47,49)(16,48,81)(17,57,20)(18,51,62)(19,61,52)(22,39,37)(24,58,79)(29,70,80)(30,71,78)(31,63,59)(32,35,34)(33,67,60)(38,69,72)(40,66,68)(42,56,54)(46,55,77)(50,76,53)(73,75,74), (1,4,15)(2,8,29)(3,13,47)(5,16,34)(6,17,58)(7,26,70)(9,30,73)(10,37,63)(11,42,67)(12,44,49)(14,48,32)(18,46,61)(19,62,77)(20,24,65)(21,57,79)(22,59,36)(23,54,33)(25,64,80)(27,71,75)(28,39,31)(35,45,81)(38,53,66)(40,72,76)(41,56,60)(43,78,74)(50,68,69)(51,55,52), (1,5,18)(2,9,33)(3,14,51)(4,16,46)(6,22,50)(7,27,67)(8,30,23)(10,38,24)(11,26,71)(12,45,62)(13,48,55)(15,34,61)(17,59,68)(19,49,35)(20,63,66)(21,39,76)(25,43,60)(28,72,79)(29,73,54)(31,40,57)(32,52,47)(36,69,58)(37,53,65)(41,64,78)(42,70,75)(44,81,77)(56,80,74), (1,3)(2,10,30,65,11,38,7,28,71,21,41,72,25,36,78,6,23,69)(4,15,44,47,13,49)(5,19,35,51,81,77)(8,31,74,24,56,68,26,59,73,79,54,66,64,63,75,58,42,40)(9,17,60,53,29,22,27,20,33,76,70,37,43,57,67,50,80,39)(14,52,34,18,16,55)(32,62,48,46,45,61), (1,5,20,64,51,71,69,33,65,37,26,13,50,16,56,62,7,27,4,17,60,63,52,76)(2,11,43,18,42,44,36,79,12,46,14,53,61,57,74,29,21,66,22,67,38,8,32,49)(3,15,54,35,77,55,47,30,6,24,19,28,40,68,58,81,25,70,72,73,23,41,80,31)(9,34,45,10,39,75)(48,78,59) ); # Booleans booleans_8398080_j := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := false, supersolvable := false); # Character Table chartbl_8398080_j:=rec(); chartbl_8398080_j.IsFinite:= true; chartbl_8398080_j.UnderlyingCharacteristic:= 0; chartbl_8398080_j.UnderlyingGroup:= GPerm; chartbl_8398080_j.Size:= 8398080; chartbl_8398080_j.InfoText:= "Character table for group 8398080.j downloaded from the LMFDB."; chartbl_8398080_j.Identifier:= " C3^3:S3.SO(5,3) "; chartbl_8398080_j.NrConjugacyClasses:= 56; chartbl_8398080_j.ConjugacyClasses:= [(), (1,7)(2,3)(4,70)(5,67)(6,21)(8,47)(9,51)(10,66)(11,34)(12,25)(13,29)(14,33)(15,26)(16,42)(17,79)(18,27)(19,78)(20,24)(22,76)(23,32)(28,68)(30,52)(31,69)(35,41)(36,40)(37,53)(38,63)(39,50)(43,62)(44,80)(45,60)(46,75)(48,54)(49,64)(55,73)(56,81)(57,58)(59,72)(61,71)(74,77), (1,9)(2,36)(3,71)(4,73)(5,17)(6,16)(7,39)(8,59)(10,80)(12,74)(13,27)(14,79)(15,30)(18,61)(20,35)(21,32)(22,29)(23,33)(24,81)(25,63)(26,28)(31,70)(34,58)(37,64)(38,53)(40,76)(41,56)(42,67)(43,49)(44,78)(45,65)(47,75)(48,57)(52,55)(62,77)(68,69), (1,21)(2,24)(3,47)(4,79)(5,74)(6,17)(7,44)(8,20)(9,30)(10,32)(12,26)(14,63)(15,57)(16,78)(18,46)(19,50)(22,27)(23,52)(28,39)(29,65)(33,51)(34,43)(35,81)(36,71)(37,48)(38,66)(40,60)(41,76)(42,67)(49,70)(54,55)(56,72)(59,75)(62,69)(64,80)(68,77), (1,7,65)(2,21,12)(3,25,6)(4,26,20)(5,27,37)(8,57,44)(9,39,45)(10,34,75)(11,66,46)(13,64,17)(14,43,22)(15,70,24)(16,71,63)(18,67,53)(19,54,72)(23,40,77)(28,35,73)(29,79,49)(30,31,81)(32,74,36)(33,76,62)(38,61,42)(41,68,55)(47,80,58)(48,78,59)(50,51,60)(52,56,69), (1,44,47)(3,4,49)(5,32,81)(6,79,20)(9,78,75)(11,60,54)(12,13,15)(14,35,16)(17,21,24)(23,67,56)(27,30,74)(33,42,41)(34,48,45)(38,76,68)(40,69,53)(43,71,73)(50,66,72)(57,65,58), (1,4,15)(2,64,70)(3,13,47)(5,16,34)(6,57,24)(7,8,80)(9,78,75)(10,22,31)(11,54,60)(12,44,49)(14,48,32)(17,79,65)(18,46,61)(19,62,77)(20,58,21)(23,56,67)(25,26,29)(27,30,74)(28,37,59)(33,41,42)(35,45,81)(36,39,63)(38,50,40)(43,71,73)(51,55,52)(53,68,72)(66,69,76), (2,39,62)(3,58,64)(4,61,5)(6,60,14)(7,75,11)(8,79,12)(9,31,35)(10,65,66)(13,68,78)(15,16,18)(17,74,51)(19,30,21)(20,37,38)(22,41,47)(23,57,81)(25,48,69)(28,44,33)(29,40,45)(32,59,43)(36,80,52)(49,73,72)(50,56,55)(54,76,77)(67,71,70), (1,44,47)(2,52,63)(5,33,6)(7,46,10)(8,19,39)(9,78,75)(11,58,45)(12,15,13)(14,56,17)(16,67,24)(18,28,64)(20,81,41)(21,35,23)(22,70,77)(25,62,37)(26,55,31)(29,61,36)(32,42,79)(34,60,57)(40,53,69)(43,73,71)(48,54,65)(50,66,72)(51,59,80), (1,27,55)(2,74,69)(3,34,42)(4,71,52)(5,67,13)(6,30,60)(7,48,18)(8,43,50)(9,56,58)(10,40,44)(11,47,16)(12,63,76)(14,61,70)(15,75,51)(17,73,41)(19,65,28)(20,39,62)(21,45,66)(22,23,25)(24,31,77)(26,32,46)(29,78,68)(33,80,36)(35,53,79)(37,72,49)(38,57,81)(54,64,59), (1,26,36)(2,74,64)(3,52,77)(4,45,49)(5,53,43)(6,33,51)(7,12,39)(8,46,40)(9,17,47)(10,73,19)(11,60,70)(13,20,71)(14,78,72)(15,69,42)(16,29,21)(18,34,48)(22,28,68)(23,24,62)(25,66,61)(27,54,30)(31,35,67)(32,79,80)(37,55,75)(38,57,76)(41,81,59)(44,56,50)(58,63,65), (1,32,78)(2,38,26)(3,54,44)(4,9,34)(5,80,48)(6,29,23)(7,47,55)(8,51,49)(10,16,21)(11,45,61)(12,24,66)(13,53,58)(14,28,57)(15,63,39)(17,65,52)(18,69,59)(19,81,60)(20,33,70)(22,72,77)(25,73,31)(27,56,68)(30,43,79)(35,40,50)(36,41,67)(37,74,64)(42,71,76)(46,62,75), (1,60,46)(2,58,74)(3,32,29)(4,52,11)(5,73,19)(6,48,21)(7,41,53)(8,64,36)(9,40,27)(10,28,62)(12,17,22)(13,59,79)(14,44,25)(15,68,66)(16,81,54)(18,26,51)(20,55,38)(23,75,31)(24,50,61)(30,33,37)(34,39,72)(35,77,71)(42,65,56)(43,49,47)(45,76,63)(57,80,78)(67,70,69), (1,30,9,15)(2,8,36,59)(3,40,71,76)(4,69,73,68)(5,34,17,58)(6,23,16,33)(7,31,39,70)(10,64,80,37)(12,44,74,78)(13,47,27,75)(14,42,79,67)(18,22,61,29)(20,56,35,41)(21,57,32,48)(24,65,81,45)(25,77,63,62)(26,52,28,55)(38,49,53,43), (1,37,43,6)(2,67,45,51)(3,31,27,79)(4,59,74,24)(5,46,25,56)(7,23,14,19)(8,41,35,61)(9,20,12,36)(10,75,17,13)(11,16,52,80)(15,28,78,57)(18,70,60,48)(21,44,39,73)(22,71,65,47)(26,42,32,55)(29,54,81,77)(30,58,49,63)(33,34,62,64)(38,53,68,50)(40,66,72,69), (1,26,7,15)(2,11,3,34)(4,24,70,20)(5,57,67,58)(6,71,21,61)(8,38,47,63)(9,40,51,36)(10,79,66,17)(12,53,25,37)(13,27,29,18)(14,73,33,55)(16,49,42,64)(19,52,78,30)(22,31,76,69)(23,56,32,81)(28,77,68,74)(35,72,41,59)(39,54,50,48)(43,45,62,60)(44,46,80,75), (1,23,74,33)(2,46,10,18)(3,57,9,34)(4,65,78,48)(5,73,21,13)(6,68,35,50)(7,26,22,36)(8,25,63,31)(11,69)(12,81,71,17)(14,72,20,76)(15,32,43,24)(16,66,79,38)(19,59,77,70)(27,42,44,67)(28,37,80,29)(30,41,47,56)(39,52,64,51)(40,54)(45,49,58,75)(53,60)(55,61), (1,59,62,39,49)(2,23,13,54,70)(3,46,11,71,53)(4,34,44,58,6)(5,80,22,38,79)(7,17,29,18,51)(8,69,32,78,12)(9,35,66,26,15)(10,81,60,67,14)(16,65,68,31,25)(19,75,77,48,45)(20,61,72,42,28)(21,30,43,24,33)(27,56,52,47,50)(36,41,40,55,57)(37,74,64,73,63), (1,45,7,9,65,39)(2,74,21,36,12,32)(3,16,25,71,6,63)(4,35,26,73,20,28)(5,64,27,17,37,13)(8,78,57,59,44,48)(10,47,34,80,75,58)(11,46,66)(14,29,43,79,22,49)(15,81,70,30,24,31)(18,38,67,61,53,42)(19,72,54)(23,62,40,33,77,76)(41,52,68,56,55,69)(50,60,51), (1,51,79,23,64,38)(2,56,20,46,47,76)(3,72,8,41,24,18)(4,52,21,33,80,66)(5,14,28,30,78,10)(6,68)(7,77)(9,74,63,16,32,39)(11,12)(13,40,29,60,65,61)(15,55,57,54,25,53)(17,50)(19,70)(22,59)(26,62)(27,81)(31,73,43,37,34,48)(35,75)(42,49)(44,67)(45,71)(58,69), (1,26,30,51,69,28)(3,58,72,5,71,23)(4,81,50,56,73,65)(6,80,54,37,16,77)(7,20,31,60,52,35)(8,14,36,79,18,11)(10,64)(13,75)(15,68)(17,34)(19,27,63,40,25,47)(22,74,29,53,46,44)(24,41)(32,49,67,66,57,43)(38,78)(42,48)(55,70)(59,61), (1,30,44,74,47,27)(2,10)(3,75,4,9,49,78)(5,17,32,21,81,24)(6,14,79,35,20,16)(7,22)(8,63)(11,54,60)(12,43,13,71,15,73)(18,46)(19,77)(23,41,67,33,56,42)(25,31)(26,36)(28,80)(29,37)(34,58,48,57,45,65)(38,50,76,66,68,72)(39,64)(40,53,69)(51,52)(59,70), (1,34)(2,52,39,36,62,80)(3,31,58,35,64,9)(4,15,61,16,5,18)(6,49,60,73,14,72)(7,66,75,10,11,65)(8,32,79,59,12,43)(13,57,68,81,78,23)(17,19,74,30,51,21)(20,67,37,71,38,70)(22,45,41,29,47,40)(24,27)(25,33,48,28,69,44)(26,63)(42,53)(50,77,56,54,55,76), (1,43,44,73,47,71)(2,57,52,34,63,60)(3,74)(4,30)(5,36,33,29,6,61)(7,21,46,35,10,23)(8,24,19,16,39,67)(9,12,78,15,75,13)(11,70,58,77,45,22)(14,59,56,80,17,51)(18,48,28,54,64,65)(20,55,81,31,41,26)(25,79,62,32,37,42)(27,49)(38,76)(40,50,53,66,69,72), (1,10,27,40,55,44)(2,69,74)(3,19,34,65,42,28)(4,9,71,56,52,58)(5,8,67,43,13,50)(6,79,30,35,60,53)(7,15,48,75,18,51)(11,16,47)(12,80,63,36,76,33)(14,59,61,54,70,64)(17,25,73,22,41,23)(20,62,39)(21,32,45,46,66,26)(24,68,31,29,77,78)(37,81,72,38,49,57), (1,38,49,80,13,35)(2,11,5,33,50,56)(3,44,41,54,36,39)(4,65,59,79,23,17)(6,18,55,71,74,24)(7,21,29,27,64,51)(8,70,72,53,45,16)(9,19,57)(10,26,31,48,22,40)(12,43,37,75,60,30)(14,58,34,73,81,61)(15,63,67)(20,69,78,66,77,76)(25,32,68)(28,52,42,46,47,62), (1,16,17,36,29,9)(2,5,4,59,58,73)(3,70,57)(6,34,8,22,15,30)(7,26,13,47,79,21)(10,81,43)(11,48,52,28,76,27)(12,53,20,41,80,19)(14,42,31,51,75,40)(18,46,68,69,54,33)(23,50,61)(24,77,25,38,44,60)(32,72,39,67,71,55)(35,45,37,63,78,74)(49,62,65,66,64,56), (1,34,45,47,51,19)(2,70,43,56,67,73)(3,24,60,49,22,80)(4,40,78)(5,69,7,61,53,54)(6,38,37,36,76,79)(8,81,63,11,55,17)(9,32,21,75,62,28)(10,12,42,65,15,25)(13,30,66)(14,74,39,52,27,58)(16,26,57,77,41,59)(18,29,50,35,33,72)(20,31)(23,64)(46,48), (1,48)(2,38,71,31,56,6)(3,53,9)(4,5,54,75,22,63)(7,8,40,21,32,49)(10,12,29,50,52,27)(11,61,17,80,81,28)(13,72,58,26,25,14)(15,35,59,39,33,30)(16,41,57)(18,65,66,74,42,77)(20,76)(23,43)(24,69,62,55,78,60)(34,67,51,73,44,64)(37,47,68,46,79,45), (1,25,26,66,36,61)(2,32,74,79,64,80)(3,81,52,59,77,41)(4,8,45,46,49,40)(5,58,53,63,43,65)(6,68,33,22,51,28)(7,76,12,38,39,57)(9,78,17,72,47,14)(10,30,73,27,19,54)(11,42,60,15,70,69)(13,34,20,48,71,18)(16,21,29)(23,31,24,35,62,67)(37,75,55)(44,50,56), (1,21,60,6,46,48)(2,74,58)(3,15,32,68,29,66)(4,11,52)(5,14,73,44,19,25)(7,31,41,23,53,75)(8,12,64,17,36,22)(9,38,40,20,27,55)(10,71,28,35,62,77)(13,50,59,61,79,24)(16,57,81,80,54,78)(18,67,26,70,51,69)(30,43,33,49,37,47)(34,42,39,65,72,56)(45,63,76), (1,65,45,39,51,50)(2,43,67)(3,37)(4,80,20,10,26,19)(5,76)(6,62)(7,60,9)(8,35,48,70,66,69)(11,15,44,56,59,28)(12,53,18,22,14,21)(13,74,40,36,71,32)(16,42,17,38,23,61)(24,78,52,46,73,57)(29,63,79,64,49,77)(30,47,81,75,31,72)(34,55,54,68,58,41), (1,16,32,21,78,10)(2,12,38,24,26,66)(3,7,54,47,44,55)(4,43,9,79,34,30)(5,37,80,74,48,64)(6,52,29,17,23,65)(8,70,51,20,49,33)(11,61,45)(13,58,53)(14,15,28,63,57,39)(18,75,69,46,59,62)(19,40,81,50,60,35)(22,68,72,27,77,56)(25,31,73)(36,42,41,71,67,76), (1,27,42,63,34,24,53,26)(2,15,30,54,36,5,17,50)(3,73,11,28,35,6,66,25)(4,74,56,39,16,21,76,80)(7,44,9,60,10,48,58,72)(8,13,71,41,59,81,20,40)(12,78,67,22,32,57,38,29)(14,65,69,64,49,75,33,31)(18,19,77,52,61,51,55,62)(23,37,45,79,68,70,47,43), (1,26,53,24,34,63,42,27)(2,50,17,5,36,54,30,15)(3,25,66,6,35,28,11,73)(4,80,76,21,16,39,56,74)(7,72,58,48,10,60,9,44)(8,40,20,81,59,41,71,13)(12,29,38,57,32,22,67,78)(14,31,33,75,49,64,69,65)(18,62,55,51,61,52,77,19)(23,43,47,70,68,79,45,37), (1,4,30,69,9,73,15,68)(2,76,8,3,36,40,59,71)(5,53,34,43,17,38,58,49)(6,74,23,78,16,12,33,44)(7,26,31,52,39,28,70,55)(10,14,64,42,80,79,37,67)(11,19)(13,61,47,29,27,18,75,22)(20,81,56,45,35,24,41,65)(21,62,57,25,32,77,48,63)(46,72)(54,66), (1,68,15,73,9,69,30,4)(2,71,59,40,36,3,8,76)(5,49,58,38,17,43,34,53)(6,44,33,12,16,78,23,74)(7,55,70,28,39,52,31,26)(10,67,37,79,80,42,64,14)(11,19)(13,22,75,18,27,29,47,61)(20,65,41,24,35,45,56,81)(21,63,48,77,32,25,57,62)(46,72)(54,66), (1,22,35,54,49,56,18,37)(2,78,59,11,24,68,41,31)(3,38,66,73,47,9,30,53)(4,19,42,48,44,5,39,55)(6,32,27,60,80,51,72,36)(7,67,33,71,79,28,10,40)(8,76,77,45,20,75,16,61)(12,57,25,29,15,26,58,65)(14,69,21,46,52,43,70,81)(17,23,50,34,64,63,74,62), (1,49,26,42,7,64,15,16)(2,68,11,74,3,28,34,77)(4,51,24,36,70,9,20,40)(5,32,57,81,67,23,58,56)(6,27,71,29,21,18,61,13)(8,10,38,79,47,66,63,17)(12,54,53,50,25,48,37,39)(14,69,73,22,33,31,55,76)(19,41,52,59,78,35,30,72)(43,46,45,80,62,75,60,44), (1,41,46,79,18,76,64,72,56)(2,38,8,20,51,24,47,23,3)(4,25,39,21,15,74,80,57,16)(5,61,31,28,40,43,78,60,34)(6,62,59)(7,17,49)(9,33,55,63,66,54,32,52,53)(10,65,48,14,13,73,30,29,37)(11,35,44)(12,75,67)(19,58,81)(22,68,26)(27,70,69)(42,77,50), (1,53,41,4,68,42,15,72,33)(2,81,79,64,35,65,70,45,17)(3,50,23,13,40,56,47,38,67)(5,57,7,16,24,8,34,6,80)(9,52,59,78,51,28,75,55,37)(10,74,77,22,27,19,31,30,62)(11,44,66,54,49,69,60,12,76)(14,20,25,48,58,26,32,21,29)(18,36,73,46,39,43,61,63,71), (1,21,59,30,62,43,39,24,49,33)(2,77,23,48,13,45,54,19,70,75)(3,47,46,50,11,27,71,56,53,52)(4,63,34,37,44,74,58,64,6,73)(5,68,80,31,22,25,38,16,79,65)(7,60,17,67,29,14,18,10,51,81)(8,15,69,9,32,35,78,66,12,26)(20,55,61,57,72,36,42,41,28,40), (1,70,45,30,7,24,9,31,65,15,39,81)(2,48,74,8,21,78,36,57,12,59,32,44)(3,62,16,40,25,33,71,77,6,76,63,23)(4,55,35,69,26,41,73,52,20,68,28,56)(5,47,64,34,27,80,17,75,37,58,13,10)(11,66,46)(14,53,29,42,43,18,79,38,22,67,49,61)(19,54,72)(50,51,60), (1,77,47,81)(2,35,58,64,19,57,41,51,31,33,14,36)(3,37,9,16,69,70,49,65,78,46,40,42)(4,53,75)(5,18,52,32)(6,12,80,66,48,30,22,15,56,72,55,27)(7,20,45,8,63,34,23,28,61,67,79,62)(10,59,17,24)(11,26,25,60)(13,74,50)(21,38,39,68)(29,43,54,71), (1,31,43,41,44,26,73,20,47,55,71,81)(2,14,57,59,52,56,34,80,63,17,60,51)(3,49,74,27)(4,38,30,76)(5,9,36,12,33,78,29,15,6,75,61,13)(7,64,21,65,46,18,35,48,10,28,23,54)(8,77,24,45,19,22,16,11,39,70,67,58)(25,69,79,72,62,40,32,50,37,53,42,66), (1,22,10,41,27,23,40,17,55,25,44,73)(2,74,69)(3,46,19,66,34,26,65,21,42,32,28,45)(4,50,9,5,71,8,56,67,52,43,58,13)(6,48,79,75,30,18,35,51,60,7,53,15)(11,47,16)(12,29,80,77,63,78,36,24,76,68,33,31)(14,72,59,38,61,49,54,57,70,37,64,81)(20,39,62), (1,17,79,38,6,52,47,26,2,43,70,5)(3,48,51,28,77,24,15,46,34,33,81,25)(4,30,56,55,42,59,13,40,37,16,22,11)(7,50,76,12,41,71,58,75,73,49,63,68)(8,62,19,74,72,60,57,35,45,53,9,10)(14,27,61,69)(18,29,65,36,31,78,32,21,80,67,23,66)(20,54,64,39), (1,42,30,23,44,41,74,67,47,33,27,56)(2,18,10,46)(3,48,75,57,4,45,9,65,49,34,78,58)(5,15,17,73,32,12,21,43,81,13,24,71)(6,66,14,68,79,72,35,38,20,50,16,76)(7,36,22,26)(8,31,63,25)(11,53,54,69,60,40)(19,70,77,59)(28,29,80,37)(39,51,64,52)(55,61), (1,53,34,42)(2,74,52,30,39,51,36,21,62,17,80,19)(3,10,31,11,58,65,35,7,64,66,9,75)(4,77,15,56,61,54,16,55,5,76,18,50)(6,44,49,25,60,33,73,48,14,28,72,69)(8,37,32,71,79,38,59,70,12,20,43,67)(13,45,57,41,68,29,81,47,78,40,23,22)(24,63,27,26), (1,20,41,51,46,24,79,47,18,23,76,3,64,2,72,38,56,8)(4,32,25,52,39,53,21,9,15,33,74,55,80,63,57,66,16,54)(5,48,61,14,31,13,28,73,40,30,43,29,78,37,60,10,34,65)(6,22,62,68,59,26)(7,42,17,77,49,50)(11,67,35,12,44,75)(19,27,58,70,81,69)(45,71), (1,63,21,34,59,37,30,44,62,74,43,58,39,64,24,6,49,73,33,4)(2,60,77,17,23,67,48,29,13,14,45,18,54,10,19,51,70,81,75,7)(3,68,47,80,46,31,50,22,11,25,27,38,71,16,56,79,53,65,52,5)(8,36,15,42,69,41,9,28,32,40,35,20,78,55,66,61,12,57,26,72), (1,4,33,73,49,6,24,64,39,58,43,74,62,44,30,37,59,34,21,63)(2,7,75,81,70,51,19,10,54,18,45,14,13,29,48,67,23,17,77,60)(3,5,52,65,53,79,56,16,71,38,27,25,11,22,50,31,46,80,47,68)(8,72,26,57,12,61,66,55,78,20,35,40,32,28,9,41,69,42,15,36), (1,56,70,4,45,55,30,35,7,69,24,26,9,41,31,73,65,52,15,20,39,68,81,28)(2,6,48,76,74,63,8,23,21,3,78,62,36,16,57,40,12,25,59,33,32,71,44,77)(5,14,47,53,64,29,34,42,27,43,80,18,17,79,75,38,37,22,58,67,13,49,10,61)(11,72,66,19,46,54)(50,60,51), (1,28,81,68,39,20,15,52,65,73,31,41,9,26,24,69,7,35,30,55,45,4,70,56)(2,77,44,71,32,33,59,25,12,40,57,16,36,62,78,3,21,23,8,63,74,76,48,6)(5,61,10,49,13,67,58,22,37,38,75,79,17,18,80,43,27,42,34,29,64,53,47,14)(11,54,46,19,66,72)(50,51,60), (1,63,53,27,34,26,42,24)(2,77,74,15,52,56,30,61,39,54,51,16,36,55,21,5,62,76,17,18,80,50,19,4)(3,33,10,73,31,48,11,14,58,28,65,72,35,69,7,6,64,44,66,49,9,25,75,60)(8,22,37,13,32,45,71,57,79,41,38,68,59,29,70,81,12,47,20,78,43,40,67,23), (1,24,42,26,34,27,53,63)(2,4,19,50,80,18,17,76,62,5,21,55,36,16,51,54,39,61,30,56,52,15,74,77)(3,60,75,25,9,49,66,44,64,6,7,69,35,72,65,28,58,14,11,48,31,73,10,33)(8,23,67,40,43,78,20,47,12,81,70,29,59,68,38,41,79,57,71,45,32,13,37,22)]; chartbl_8398080_j.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]; chartbl_8398080_j.ComputedPowerMaps:= [ , [1, 1, 1, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 3, 2, 2, 3, 18, 5, 6, 6, 6, 8, 9, 10, 7, 5, 9, 8, 11, 13, 9, 12, 16, 16, 14, 14, 16, 16, 40, 41, 18, 19, 22, 24, 25, 23, 22, 23, 40, 42, 42, 43, 43, 49, 49], [1, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14, 15, 16, 17, 18, 3, 2, 3, 3, 2, 2, 3, 3, 4, 3, 3, 3, 3, 4, 4, 34, 35, 36, 37, 38, 39, 6, 7, 42, 14, 14, 15, 14, 15, 17, 16, 20, 51, 52, 36, 37, 34, 35], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 34, 37, 36, 38, 39, 40, 41, 2, 43, 44, 45, 46, 47, 48, 49, 50, 15, 15, 54, 53, 56, 55]]; chartbl_8398080_j.SizesCentralizers:= [8398080, 103680, 10368, 864, 104976, 34992, 4374, 3888, 1944, 1944, 486, 486, 486, 1728, 1440, 192, 192, 20, 1296, 1296, 1296, 432, 432, 216, 216, 162, 108, 108, 108, 54, 54, 36, 18, 192, 192, 48, 48, 32, 16, 54, 27, 20, 216, 72, 36, 36, 36, 24, 24, 18, 20, 20, 24, 24, 24, 24]; chartbl_8398080_j.ClassNames:= ["1A", "2A", "2B", "2C", "3A", "3B", "3C", "3D", "3E", "3F", "3G", "3H", "3I", "4A", "4B", "4C", "4D", "5A", "6A", "6B", "6C", "6D", "6E", "6F", "6G", "6H", "6I", "6J", "6K", "6L", "6M", "6N", "6O", "8A1", "8A-1", "8B1", "8B-1", "8C", "8D", "9A", "9B", "10A", "12A", "12B", "12C", "12D", "12E", "12F", "12G", "18A", "20A1", "20A-1", "24A1", "24A-1", "24B1", "24B-1"]; chartbl_8398080_j.OrderClassRepresentatives:= [1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 9, 9, 10, 12, 12, 12, 12, 12, 12, 12, 18, 20, 20, 24, 24, 24, 24]; chartbl_8398080_j.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1], [6, 6, -2, 0, 6, -3, -3, 3, 0, -3, 3, 0, 0, 2, 4, 2, 2, 1, -2, -3, 1, 1, 3, 0, 1, 1, 0, -2, 1, 1, -2, 0, 0, -2, -2, 0, 0, 2, 0, 0, 0, 1, 2, -1, -1, 1, -2, -1, -1, 0, -1, -1, 1, 1, 0, 0], [6, 6, -2, 0, 6, -3, -3, 3, 0, -3, 3, 0, 0, 2, -4, 2, 2, 1, -2, -3, 1, 1, 3, 0, 1, 1, 0, -2, 1, 1, -2, 0, 0, 2, 2, 0, 0, -2, 0, 0, 0, 1, 2, -1, -1, -1, 2, -1, -1, 0, 1, 1, -1, -1, 0, 0], [8, -8, 0, 0, 8, -1, -1, -4, 2, -1, -4, 2, 2, 4, 0, 0, -4, -2, 0, 1, -3, 3, 4, -2, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 2, 4, 1, 1, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0], [10, 10, -6, 0, 10, 1, 1, -2, 4, 1, -2, 4, 4, 2, 0, 2, 2, 0, -6, 1, -3, -3, -2, 4, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 1, 1, 0, 2, -1, -1, 0, 0, -1, 2, 1, 0, 0, 0, 0, 0, 0], [15, 15, 7, 1, 15, -3, -3, 0, 3, -3, 0, 3, 3, -1, 5, 3, -1, 0, 7, -3, 1, 1, 0, 3, 1, 1, 1, 1, -2, -2, 1, 1, 1, 3, 3, -1, -1, -1, 1, 0, 0, 0, -1, -1, -1, 2, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1], [15, 15, -1, 3, 15, 6, 6, 3, 0, 6, 3, 0, 0, 3, -5, -1, 3, 0, -1, 6, 2, 2, 3, 0, 2, 2, 3, 2, -1, -1, 2, 0, 0, -1, -1, 1, 1, -1, -1, 0, 0, 0, 3, 0, 0, 1, -2, 0, -1, 0, 0, 0, -1, -1, 1, 1], [15, 15, 7, -1, 15, -3, -3, 0, 3, -3, 0, 3, 3, -1, -5, 3, -1, 0, 7, -3, 1, 1, 0, 3, 1, 1, -1, 1, -2, -2, 1, -1, -1, -3, -3, 1, 1, 1, 1, 0, 0, 0, -1, -1, -1, -2, 1, -1, 0, 0, 0, 0, 0, 0, 1, 1], [15, 15, -1, -3, 15, 6, 6, 3, 0, 6, 3, 0, 0, 3, 5, -1, 3, 0, -1, 6, 2, 2, 3, 0, 2, 2, -3, 2, -1, -1, 2, 0, 0, 1, 1, -1, -1, 1, -1, 0, 0, 0, 3, 0, 0, -1, 2, 0, -1, 0, 0, 0, 1, 1, -1, -1], [20, 20, 4, 2, 20, 2, 2, 5, -1, 2, 5, -1, -1, 0, 10, 4, 0, 0, 4, 2, -2, -2, 5, -1, -2, -2, 2, 1, 1, 1, 1, -1, -1, 2, 2, 0, 0, 2, 0, -1, -1, 0, 0, 0, 0, 1, 1, 0, 1, -1, 0, 0, -1, -1, 0, 0], [20, 20, 4, -2, 20, 2, 2, 5, -1, 2, 5, -1, -1, 0, -10, 4, 0, 0, 4, 2, -2, -2, 5, -1, -2, -2, -2, 1, 1, 1, 1, 1, 1, -2, -2, 0, 0, -2, 0, -1, -1, 0, 0, 0, 0, -1, -1, 0, 1, -1, 0, 0, 1, 1, 0, 0], [20, 20, 4, 0, 20, -7, -7, 2, 2, -7, 2, 2, 2, 4, 0, -4, 4, 0, 4, -7, 1, 1, 2, 2, 1, 1, 0, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 4, 1, 1, 0, 0, 1, 2, -1, 0, 0, 0, 0, 0, 0], [20, -20, 0, 0, 20, -7, -7, 2, 2, -7, 2, 2, 2, 2, 0, 0, -2, 0, 0, 7, 3, -3, -2, -2, -3, 3, 0, 0, 0, 0, 0, 0, 0, -2*E(8)-2*E(8)^3, 2*E(8)+2*E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, 0, 0, -1, -1, 0, 2, -1, -1, 0, 0, 1, 0, 1, 0, 0, -1*E(8)-E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3], [20, -20, 0, 0, 20, -7, -7, 2, 2, -7, 2, 2, 2, 2, 0, 0, -2, 0, 0, 7, 3, -3, -2, -2, -3, 3, 0, 0, 0, 0, 0, 0, 0, 2*E(8)+2*E(8)^3, -2*E(8)-2*E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, 0, 0, -1, -1, 0, 2, -1, -1, 0, 0, 1, 0, 1, 0, 0, E(8)+E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3], [24, 24, 8, 4, 24, 6, 6, 0, 3, 6, 0, 3, 3, 0, 4, 0, 0, -1, 8, 6, 2, 2, 0, 3, 2, 2, 4, -1, 2, 2, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -2, 1, 0, 0, 0, -1, -1, 0, 0, 0, 0], [24, 24, 8, -4, 24, 6, 6, 0, 3, 6, 0, 3, 3, 0, -4, 0, 0, -1, 8, 6, 2, 2, 0, 3, 2, 2, -4, -1, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 2, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0], [30, 30, -10, -2, 30, 3, 3, 3, 3, 3, 3, 3, 3, -2, 10, 2, -2, 0, -10, 3, -1, -1, 3, 3, -1, -1, -2, -1, -1, -1, -1, 1, 1, -4, -4, 0, 0, 0, 0, 0, 0, 0, -2, 1, 1, 1, 1, 1, -1, 0, 0, 0, -1, -1, 0, 0], [30, 30, -10, 2, 30, 3, 3, 3, 3, 3, 3, 3, 3, -2, -10, 2, -2, 0, -10, 3, -1, -1, 3, 3, -1, -1, 2, -1, -1, -1, -1, -1, -1, 4, 4, 0, 0, 0, 0, 0, 0, 0, -2, 1, 1, -1, -1, 1, -1, 0, 0, 0, 1, 1, 0, 0], [40, -40, 0, 0, 40, 13, 13, 4, 4, 13, 4, 4, 4, 4, 0, 0, -4, 0, 0, -13, 3, -3, -4, -4, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 4, 1, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0], [40, -40, 0, 0, 40, 4, 4, -8, -2, 4, -8, -2, -2, 4, 0, 0, -4, 0, 0, -4, 0, 0, 8, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 4, -2, -2, 0, 0, 2, 0, -1, 0, 0, 0, 0, 0, 0], [60, 60, -4, 2, 60, 6, 6, -3, -3, 6, -3, -3, -3, 0, 10, 4, 0, 0, -4, 6, 2, 2, -3, -3, 2, 2, 2, -1, -1, -1, -1, -1, -1, -2, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0], [60, 60, 12, 0, 60, -3, -3, -6, 0, -3, -6, 0, 0, 4, 0, 4, 4, 0, 12, -3, -3, -3, -6, 0, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 1, 0, 0, 1, -2, 0, 0, 0, 0, 0, 0, 0], [60, 60, -4, -2, 60, 6, 6, -3, -3, 6, -3, -3, -3, 0, -10, 4, 0, 0, -4, 6, 2, 2, -3, -3, 2, 2, -2, -1, -1, -1, -1, 1, 1, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 1, 0, 0, 0, -1, -1, 0, 0], [60, -60, 0, 0, 60, -3, -3, -6, 0, -3, -6, 0, 0, -2, 0, 0, 2, 0, 0, 3, 3, -3, 6, 0, -3, 3, 0, 0, 0, 0, 0, 0, 0, -2*E(8)-2*E(8)^3, 2*E(8)+2*E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, 0, 0, 0, 0, 0, -2, 1, 1, 0, 0, -1, 0, 0, 0, 0, -1*E(8)-E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3], [60, -60, 0, 0, 60, -3, -3, -6, 0, -3, -6, 0, 0, -2, 0, 0, 2, 0, 0, 3, 3, -3, 6, 0, -3, 3, 0, 0, 0, 0, 0, 0, 0, 2*E(8)+2*E(8)^3, -2*E(8)-2*E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, 0, 0, 0, 0, 0, -2, 1, 1, 0, 0, -1, 0, 0, 0, 0, E(8)+E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3], [64, 64, 0, 0, 64, -8, -8, 4, -2, -8, 4, -2, -2, 0, 16, 0, 0, -1, 0, -8, 0, 0, 4, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, -2, -2, 0, 0, 1, 1, 1, 0, 0, 0, 0], [64, 64, 0, 0, 64, -8, -8, 4, -2, -8, 4, -2, -2, 0, -16, 0, 0, -1, 0, -8, 0, 0, 4, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 2, 2, 0, 0, 1, -1, -1, 0, 0, 0, 0], [64, -64, 0, 0, 64, -8, -8, 4, -2, -8, 4, -2, -2, 0, 0, 0, 0, -1, 0, 8, 0, 0, -4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1, -2*E(20)^3+E(20)^5-2*E(20)^7, 2*E(20)^3-E(20)^5+2*E(20)^7, 0, 0, 0, 0], [64, -64, 0, 0, 64, -8, -8, 4, -2, -8, 4, -2, -2, 0, 0, 0, 0, -1, 0, 8, 0, 0, -4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 2*E(20)^3-E(20)^5+2*E(20)^7, -2*E(20)^3+E(20)^5-2*E(20)^7, 0, 0, 0, 0], [72, -72, 0, 0, 72, -9, -9, 0, 0, -9, 0, 0, 0, 4, 0, 0, -4, 2, 0, 9, -3, 3, 0, 0, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0], [80, 0, 8, 8, -1, 26, -1, 8, 8, -1, -1, -1, -1, 8, 0, 0, 0, 0, -1, 0, 8, 2, 0, 0, -1, -1, -1, 2, 2, -1, -1, 2, -1, 0, 0, 2, 2, 0, 0, 2, -1, 0, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1], [80, 0, 8, -8, -1, 26, -1, 8, 8, -1, -1, -1, -1, 8, 0, 0, 0, 0, -1, 0, 8, 2, 0, 0, -1, -1, 1, 2, 2, -1, -1, -2, 1, 0, 0, -2, -2, 0, 0, 2, -1, 0, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1], [80, 80, -16, 0, 80, -10, -10, -4, 2, -10, -4, 2, 2, 0, 0, 0, 0, 0, -16, -10, 2, 2, -4, 2, 2, 2, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0], [80, -80, 0, 0, 80, 8, 8, 2, -4, 8, 2, -4, -4, 0, 0, 0, 0, 0, 0, -8, 0, 0, -2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4*E(8)-4*E(8)^3, 4*E(8)+4*E(8)^3, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, E(8)+E(8)^3, -1*E(8)-E(8)^3, 0, 0], [80, -80, 0, 0, 80, 8, 8, 2, -4, 8, 2, -4, -4, 0, 0, 0, 0, 0, 0, -8, 0, 0, -2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4*E(8)+4*E(8)^3, -4*E(8)-4*E(8)^3, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1*E(8)-E(8)^3, E(8)+E(8)^3, 0, 0], [81, 81, 9, 3, 81, 0, 0, 0, 0, 0, 0, 0, 0, -3, -9, -3, -3, 1, 9, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, -3, -3, -1, -1, 1, -1, 0, 0, 1, -3, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, -1, -1], [81, 81, 9, -3, 81, 0, 0, 0, 0, 0, 0, 0, 0, -3, 9, -3, -3, 1, 9, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 3, 3, 1, 1, -1, -1, 0, 0, 1, -3, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 1, 1], [90, 90, -6, 0, 90, 9, 9, 0, 0, 9, 0, 0, 0, 2, 0, -6, 2, 0, -6, 9, -3, -3, 0, 0, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, -1, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0], [120, -120, 0, 0, 120, 3, 3, 0, 6, 3, 0, 6, 6, -4, 0, 0, 4, 0, 0, -3, -3, 3, 0, -6, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -1, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [160, 0, 16, 0, -2, -20, 7, -8, 4, -2, 1, 4, -5, 16, 0, 0, 0, 0, -2, 0, -8, 4, 0, 0, -2, 1, 0, -2, -2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 1, 0, -2, 4, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [160, 0, -16, 0, -2, -20, 7, -8, 4, -2, 1, 4, -5, 0, 0, 0, 0, 0, 2, 0, 8, -4, 0, 0, 2, -1, 0, 2, 2, -1, -1, 0, 0, 0, 0, -2*E(8)-2*E(8)^3, 2*E(8)+2*E(8)^3, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(8)-E(8)^3, E(8)+E(8)^3], [160, 0, -16, 0, -2, -20, 7, -8, 4, -2, 1, 4, -5, 0, 0, 0, 0, 0, 2, 0, 8, -4, 0, 0, 2, -1, 0, 2, 2, -1, -1, 0, 0, 0, 0, 2*E(8)+2*E(8)^3, -2*E(8)-2*E(8)^3, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(8)+E(8)^3, -1*E(8)-E(8)^3], [240, 0, 24, 8, -3, 6, 6, 0, 12, -3, 0, 3, -6, -8, 0, 0, 0, 0, -3, 0, 0, 6, 0, 0, -3, 0, -1, 0, 0, 0, 0, 2, -1, 0, 0, -2, -2, 0, 0, 0, 0, 0, 1, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1], [240, 0, 24, -8, -3, 6, 6, 0, 12, -3, 0, 3, -6, -8, 0, 0, 0, 0, -3, 0, 0, 6, 0, 0, -3, 0, 1, 0, 0, 0, 0, -2, 1, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1], [320, 0, -32, 0, -4, 32, 5, 8, 20, -4, -1, 2, -7, 0, 0, 0, 0, 0, 4, 0, -8, -8, 0, 0, 4, 1, 0, -2, -2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [480, 0, -16, 0, -6, -78, 3, 24, 0, 3, -3, 0, 0, 16, 0, 0, 0, 0, 2, 0, 8, 2, 0, 0, -1, -1, 0, -4, 2, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [480, 0, -16, 0, -6, -6, -6, -24, 12, 3, 3, -6, 3, 16, 0, 0, 0, 0, 2, 0, -16, 2, 0, 0, -1, 2, 0, 2, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [480, 0, -16, 0, -6, 66, -15, 0, -12, 3, 0, 6, -3, 16, 0, 0, 0, 0, 2, 0, 8, 2, 0, 0, -1, -1, 0, 2, -4, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [640, 0, 0, 16, -8, 64, 10, 16, 4, -8, -2, -5, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [640, 0, 0, -16, -8, 64, 10, 16, 4, -8, -2, -5, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [960, 0, 32, 0, -12, -84, -3, 0, 12, 6, 0, -6, 3, 0, 0, 0, 0, 0, -4, 0, 8, -4, 0, 0, 2, -1, 0, 2, -4, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [960, 0, 32, 0, -12, -12, -12, 24, -12, 6, -3, 6, -3, 0, 0, 0, 0, 0, -4, 0, -16, -4, 0, 0, 2, 2, 0, 2, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [960, 0, 32, 0, -12, 60, -21, -24, 0, 6, 3, 0, 0, 0, 0, 0, 0, 0, -4, 0, 8, -4, 0, 0, 2, -1, 0, -4, 2, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1280, 0, 0, 0, -16, -16, 38, -16, -16, -16, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1440, 0, -48, 0, -18, -18, -18, 0, 0, 9, 0, 0, 0, -16, 0, 0, 0, 0, 6, 0, 0, 6, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]; ConvertToLibraryCharacterTableNC(chartbl_8398080_j);