Properties

Label 4199040.a
Order \( 2^{7} \cdot 3^{8} \cdot 5 \)
Exponent \( 2^{3} \cdot 3^{2} \cdot 5 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{8} \cdot 3^{8} \cdot 5 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $81$
Trans deg. $81$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 81 | (2,3)(5,6)(8,9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(28,55)(29,57)(30,56)(31,58)(32,60)(33,59)(34,61)(35,63)(36,62)(37,64)(38,66)(39,65)(40,67)(41,69)(42,68)(43,70)(44,72)(45,71)(46,73)(47,75)(48,74)(49,76)(50,78)(51,77)(52,79)(53,81)(54,80), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81), (2,11,41,39,48,78,73,55,4)(3,21,81,74,65,44,37,28,7)(5,12,51,76,56,14,42,46,58)(6,19,61)(8,10,31)(9,20,71,43,30,27,80,64,34)(13,32,18,50,69,52,60,22,62)(15,49,59)(16,33,25,63,23,72,53,67,35)(17,40,29)(24,79,57)(26,70,36)(45,47,68)(54,77,66) >;
 
Copy content gap:G := Group( (2,3)(5,6)(8,9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(28,55)(29,57)(30,56)(31,58)(32,60)(33,59)(34,61)(35,63)(36,62)(37,64)(38,66)(39,65)(40,67)(41,69)(42,68)(43,70)(44,72)(45,71)(46,73)(47,75)(48,74)(49,76)(50,78)(51,77)(52,79)(53,81)(54,80), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81), (2,11,41,39,48,78,73,55,4)(3,21,81,74,65,44,37,28,7)(5,12,51,76,56,14,42,46,58)(6,19,61)(8,10,31)(9,20,71,43,30,27,80,64,34)(13,32,18,50,69,52,60,22,62)(15,49,59)(16,33,25,63,23,72,53,67,35)(17,40,29)(24,79,57)(26,70,36)(45,47,68)(54,77,66) );
 
Copy content sage:G = PermutationGroup(['(2,3)(5,6)(8,9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(28,55)(29,57)(30,56)(31,58)(32,60)(33,59)(34,61)(35,63)(36,62)(37,64)(38,66)(39,65)(40,67)(41,69)(42,68)(43,70)(44,72)(45,71)(46,73)(47,75)(48,74)(49,76)(50,78)(51,77)(52,79)(53,81)(54,80)', '(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81)', '(2,11,41,39,48,78,73,55,4)(3,21,81,74,65,44,37,28,7)(5,12,51,76,56,14,42,46,58)(6,19,61)(8,10,31)(9,20,71,43,30,27,80,64,34)(13,32,18,50,69,52,60,22,62)(15,49,59)(16,33,25,63,23,72,53,67,35)(17,40,29)(24,79,57)(26,70,36)(45,47,68)(54,77,66)'])
 

Group information

Description:$C_3^4:\Sp(4,3)$
Order: \(4199040\)\(\medspace = 2^{7} \cdot 3^{8} \cdot 5 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $C_3$ x 4, $\SU(4,2)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and perfect (hence nonsolvable).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 8 9 10 12 18
Elements 1 891 64880 92340 419904 654480 524880 466560 419904 1088640 466560 4199040
Conjugacy classes   1 2 14 3 1 21 1 4 1 8 2 58
Divisions 1 2 9 3 1 12 1 2 1 5 1 38
Autjugacy classes 1 2 9 3 1 12 1 2 1 5 1 38

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 4 5 6 8 10 15 20 24 30 36 40 45 60 64 72 80 81 90 120 160 240 320 480 640 720 960 1280 1440
Irr. complex chars.   1 2 2 1 0 2 2 6 1 3 2 2 2 4 2 0 4 1 0 0 3 7 0 6 3 2 0 0 0 58
Irr. rational chars. 1 0 0 1 1 1 2 3 1 1 0 2 0 3 2 1 3 1 1 1 2 1 1 3 1 0 3 1 1 38

Minimal presentations

Permutation degree:$81$
Transitive degree:$81$
Rank: $2$
Inequivalent generating pairs: $1840800$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 80 80 80
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\ASp(4,3)$, $\ASigmaSp(4,3)$
Permutation group:Degree $81$ $\langle(2,3)(5,6)(8,9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(28,55)(29,57) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 81 | (2,3)(5,6)(8,9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(28,55)(29,57)(30,56)(31,58)(32,60)(33,59)(34,61)(35,63)(36,62)(37,64)(38,66)(39,65)(40,67)(41,69)(42,68)(43,70)(44,72)(45,71)(46,73)(47,75)(48,74)(49,76)(50,78)(51,77)(52,79)(53,81)(54,80), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81), (2,11,41,39,48,78,73,55,4)(3,21,81,74,65,44,37,28,7)(5,12,51,76,56,14,42,46,58)(6,19,61)(8,10,31)(9,20,71,43,30,27,80,64,34)(13,32,18,50,69,52,60,22,62)(15,49,59)(16,33,25,63,23,72,53,67,35)(17,40,29)(24,79,57)(26,70,36)(45,47,68)(54,77,66) >;
 
Copy content gap:G := Group( (2,3)(5,6)(8,9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(28,55)(29,57)(30,56)(31,58)(32,60)(33,59)(34,61)(35,63)(36,62)(37,64)(38,66)(39,65)(40,67)(41,69)(42,68)(43,70)(44,72)(45,71)(46,73)(47,75)(48,74)(49,76)(50,78)(51,77)(52,79)(53,81)(54,80), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81), (2,11,41,39,48,78,73,55,4)(3,21,81,74,65,44,37,28,7)(5,12,51,76,56,14,42,46,58)(6,19,61)(8,10,31)(9,20,71,43,30,27,80,64,34)(13,32,18,50,69,52,60,22,62)(15,49,59)(16,33,25,63,23,72,53,67,35)(17,40,29)(24,79,57)(26,70,36)(45,47,68)(54,77,66) );
 
Copy content sage:G = PermutationGroup(['(2,3)(5,6)(8,9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(28,55)(29,57)(30,56)(31,58)(32,60)(33,59)(34,61)(35,63)(36,62)(37,64)(38,66)(39,65)(40,67)(41,69)(42,68)(43,70)(44,72)(45,71)(46,73)(47,75)(48,74)(49,76)(50,78)(51,77)(52,79)(53,81)(54,80)', '(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81)', '(2,11,41,39,48,78,73,55,4)(3,21,81,74,65,44,37,28,7)(5,12,51,76,56,14,42,46,58)(6,19,61)(8,10,31)(9,20,71,43,30,27,80,64,34)(13,32,18,50,69,52,60,22,62)(15,49,59)(16,33,25,63,23,72,53,67,35)(17,40,29)(24,79,57)(26,70,36)(45,47,68)(54,77,66)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $C_3^4$ $\,\rtimes\,$ $\Sp(4,3)$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $(C_3^3:S_3)$ . $\SU(4,2)$ more information

Elements of the group are displayed as permutations of degree 81.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 11069772 subgroups in 1222 conjugacy classes, 4 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_3^4:\Sp(4,3)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^4:\Sp(4,3)$ $G/G' \simeq$ $C_1$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_3^4:\Sp(4,3)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^4$ $G/\operatorname{Fit} \simeq$ $\Sp(4,3)$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^3:S_3$ $G/R \simeq$ $\SU(4,2)$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^4$ $G/\operatorname{soc} \simeq$ $\Sp(4,3)$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $Q_8\wr C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4.C_3^3.C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$

Subgroup diagram and profile

Series

Derived series $C_3^4:\Sp(4,3)$ $\rhd$ $C_3^4:\Sp(4,3)$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^4:\Sp(4,3)$ $\rhd$ $C_3^4:\Sp(4,3)$ $\rhd$ $C_3^3:S_3$ $\rhd$ $C_3^3:S_3$ $\rhd$ $C_3^4$ $\rhd$ $C_3^4$ $\rhd$ $C_1$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^4:\Sp(4,3)$ $\rhd$ $C_3^4:\Sp(4,3)$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $58 \times 58$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $38 \times 38$ rational character table.