Subgroup ($H$) information
Description: | not computed |
Order: | \(2048\)\(\medspace = 2^{11} \) |
Index: | \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Exponent: | not computed |
Generators: |
$\langle(17,18)(19,20)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44), (37,38)(39,40) \!\cdots\! \rangle$
|
Nilpotency class: | not computed |
Derived length: | not computed |
The subgroup is the socle (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.
Ambient group ($G$) information
Description: | $C_2^{12}.M_{11}$ |
Order: | \(32440320\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Exponent: | \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
Description: | $C_2\times M_{11}$ |
Order: | \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Exponent: | \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
Automorphism Group: | $M_{11}$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $-1$ |
Derived length: | $1$ |
The quotient is nonabelian and nonsolvable.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^{12}.M_{11}$, of order \(32440320\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 5 \cdot 11 \) |
$\operatorname{Aut}(H)$ | not computed |
$W$ | $M_{11}$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Related subgroups
Centralizer: | $C_2^{12}$ |
Normalizer: | $C_2^{12}.M_{11}$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_2^{11}.M_{11}$ |