Properties

Label 32440320.b.7920.A
Order $ 2^{12} $
Index $ 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^{12}$
Order: \(4096\)\(\medspace = 2^{12} \)
Index: \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(2\)
Generators: $\langle(17,18)(19,20)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44), (37,38)(39,40) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the radical, abelian (hence metabelian and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor, a semidirect factor, or almost simple has not been computed.

Ambient group ($G$) information

Description: $C_2^{12}.M_{11}$
Order: \(32440320\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $M_{11}$
Order: \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Automorphism Group: $M_{11}$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $0$

The quotient is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{12}.M_{11}$, of order \(32440320\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ Group of order \(644\!\cdots\!000\)\(\medspace = 2^{66} \cdot 3^{8} \cdot 5^{3} \cdot 7^{4} \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 31^{2} \cdot 73 \cdot 89 \cdot 127 \)
$W$$M_{11}$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2^{12}$
Normalizer:$C_2^{12}.M_{11}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^{11}.M_{11}$