Properties

Label 32440320.b.1.a1
Order $ 2^{16} \cdot 3^{2} \cdot 5 \cdot 11 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^{12}.M_{11}$
Order: \(32440320\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 5 \cdot 11 \)
Index: $1$
Exponent: \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\langle(1,20,5,23,2,19,6,24)(3,18,8,21,4,17,7,22)(9,12,10,11)(13,31,37,27)(14,32,38,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, and nonsolvable. Whether it is a direct factor has not been computed.

Ambient group ($G$) information

Description: $C_2^{12}.M_{11}$
Order: \(32440320\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{12}.M_{11}$, of order \(32440320\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2^{12}.M_{11}$, of order \(32440320\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 5 \cdot 11 \)
$W$$C_2^{11}.M_{11}$, of order \(16220160\)\(\medspace = 2^{15} \cdot 3^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^{12}.M_{11}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^{11}.M_{11}$