Properties

Label 7920.a
Order \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent \( 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Simple yes
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
$\card{\mathrm{Out}(G)}$ \( 1 \)
Perm deg. $11$
Trans deg. $11$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 11 | (1,3,9,5,4)(2,6,7,10,8), (2,6,10,7)(3,9,4,5), (1,2,3,4,5,6,7,8,9,10,11) >;
 
Copy content gap:G := Group( (1,3,9,5,4)(2,6,7,10,8), (2,6,10,7)(3,9,4,5), (1,2,3,4,5,6,7,8,9,10,11) );
 
Copy content sage:G = PermutationGroup(['(1,3,9,5,4)(2,6,7,10,8)', '(2,6,10,7)(3,9,4,5)', '(1,2,3,4,5,6,7,8,9,10,11)'])
 

Group information

Description:$M_{11}$
Order: \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$M_{11}$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$M_{11}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 8 11
Elements 1 165 440 990 1584 1320 1980 1440 7920
Conjugacy classes   1 1 1 1 1 1 2 2 10
Divisions 1 1 1 1 1 1 1 1 8
Autjugacy classes 1 1 1 1 1 1 2 2 10

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 10 11 16 20 32 44 45 55
Irr. complex chars.   1 3 1 2 0 0 1 1 1 10
Irr. rational chars. 1 1 1 0 1 1 1 1 1 8

Minimal presentations

Permutation degree:$11$
Transitive degree:$11$
Rank: $2$
Inequivalent generating pairs: $6478$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 10 10 10
Arbitrary 10 10 10

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $11$ $\langle(1,3,9,5,4)(2,6,7,10,8), (2,6,10,7)(3,9,4,5), (1,2,3,4,5,6,7,8,9,10,11)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 11 | (1,3,9,5,4)(2,6,7,10,8), (2,6,10,7)(3,9,4,5), (1,2,3,4,5,6,7,8,9,10,11) >;
 
Copy content gap:G := Group( (1,3,9,5,4)(2,6,7,10,8), (2,6,10,7)(3,9,4,5), (1,2,3,4,5,6,7,8,9,10,11) );
 
Copy content sage:G = PermutationGroup(['(1,3,9,5,4)(2,6,7,10,8)', '(2,6,10,7)(3,9,4,5)', '(1,2,3,4,5,6,7,8,9,10,11)'])
 
Transitive group: 11T6 12T272 22T22 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not isomorphic to a non-trivial semidirect product
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Aut. group: $\Aut(C_2\times M_{11})$

Elements of the group are displayed as permutations of degree 11.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 8651 subgroups in 39 conjugacy classes, 2 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $M_{11}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $M_{11}$ $G/G' \simeq$ $C_1$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $M_{11}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_1$ $G/\operatorname{Fit} \simeq$ $M_{11}$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_1$ $G/R \simeq$ $M_{11}$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $M_{11}$ $G/\operatorname{soc} \simeq$ $C_1$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $\SD_{16}$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $M_{11}$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $M_{11}$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $M_{11}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 10 larger groups in the database.

This group is a maximal quotient of 6 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

1A 2A 3A 4A 5A 6A 8A1 8A-1 11A1 11A-1
Size 1 165 440 990 1584 1320 990 990 720 720
2 P 1A 1A 3A 2A 5A 3A 4A 4A 11A-1 11A1
3 P 1A 2A 1A 4A 5A 2A 8A1 8A-1 11A1 11A-1
5 P 1A 2A 3A 4A 1A 6A 8A-1 8A1 11A1 11A-1
11 P 1A 2A 3A 4A 5A 6A 8A1 8A-1 1A 1A
Type
7920.a.1a R 1 1 1 1 1 1 1 1 1 1
7920.a.10a R 10 2 1 2 0 1 0 0 1 1
7920.a.10b1 C 10 2 1 0 0 1 ζ8ζ83 ζ8+ζ83 1 1
7920.a.10b2 C 10 2 1 0 0 1 ζ8+ζ83 ζ8ζ83 1 1
7920.a.11a R 11 3 2 1 1 0 1 1 0 0
7920.a.16a1 C 16 0 2 0 1 0 0 0 ζ1121ζ11ζ113ζ114ζ115 ζ112+ζ11+ζ113+ζ114+ζ115
7920.a.16a2 C 16 0 2 0 1 0 0 0 ζ112+ζ11+ζ113+ζ114+ζ115 ζ1121ζ11ζ113ζ114ζ115
7920.a.44a R 44 4 1 0 1 1 0 0 0 0
7920.a.45a R 45 3 0 1 0 0 1 1 1 1
7920.a.55a R 55 1 1 1 0 1 1 1 0 0

Rational character table

1A 2A 3A 4A 5A 6A 8A 11A
Size 1 165 440 990 1584 1320 1980 1440
2 P 1A 1A 3A 2A 5A 3A 4A 11A
3 P 1A 2A 1A 4A 5A 2A 8A 11A
5 P 1A 2A 3A 4A 1A 6A 8A 11A
11 P 1A 2A 3A 4A 5A 6A 8A 1A
7920.a.1a 1 1 1 1 1 1 1 1
7920.a.10a 10 2 1 2 0 1 0 1
7920.a.10b 20 4 2 0 0 2 0 2
7920.a.11a 11 3 2 1 1 0 1 0
7920.a.16a 32 0 4 0 2 0 0 1
7920.a.44a 44 4 1 0 1 1 0 0
7920.a.45a 45 3 0 1 0 0 1 1
7920.a.55a 55 1 1 1 0 1 1 0