Group action invariants
| Degree $n$ : | $11$ | |
| Transitive number $t$ : | $6$ | |
| Group : | $M_{11}$ | |
| CHM label : | $M(11)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,9,5,4)(2,6,7,10,8), (2,6,10,7)(3,9,4,5), (1,2,3,4,5,6,7,8,9,10,11) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
12T272, 22T22Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1 $ | $165$ | $2$ | $( 1, 6)( 3, 8)( 4, 7)( 5,11)$ |
| $ 4, 4, 1, 1, 1 $ | $990$ | $4$ | $( 1, 5, 6,11)( 3, 4, 8, 7)$ |
| $ 8, 2, 1 $ | $990$ | $8$ | $( 1, 4, 5, 8, 6, 7,11, 3)( 9,10)$ |
| $ 8, 2, 1 $ | $990$ | $8$ | $( 1, 3,11, 7, 6, 8, 5, 4)( 9,10)$ |
| $ 3, 3, 3, 1, 1 $ | $440$ | $3$ | $( 1, 7, 4)( 2,10, 8)( 5,11, 6)$ |
| $ 6, 3, 2 $ | $1320$ | $6$ | $( 1, 5, 7,11, 4, 6)( 2, 8,10)( 3, 9)$ |
| $ 11 $ | $720$ | $11$ | $( 1, 7, 2, 8, 3, 9, 4,10, 5,11, 6)$ |
| $ 11 $ | $720$ | $11$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)$ |
| $ 5, 5, 1 $ | $1584$ | $5$ | $( 2,10, 5, 4, 6)( 3, 8, 9, 7,11)$ |
Group invariants
| Order: | $7920=2^{4} \cdot 3^{2} \cdot 5 \cdot 11$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 4 . 4 3 1 1 3 3 . .
3 2 . 1 . 2 1 . . . .
5 1 1 . . . . . . . .
11 1 . . . . . . . 1 1
1a 5a 2a 4a 3a 6a 8a 8b 11a 11b
2P 1a 5a 1a 2a 3a 3a 4a 4a 11b 11a
3P 1a 5a 2a 4a 1a 2a 8a 8b 11a 11b
5P 1a 1a 2a 4a 3a 6a 8b 8a 11a 11b
7P 1a 5a 2a 4a 3a 6a 8b 8a 11b 11a
11P 1a 5a 2a 4a 3a 6a 8a 8b 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1
X.2 10 . 2 2 1 -1 . . -1 -1
X.3 10 . -2 . 1 1 A -A -1 -1
X.4 10 . -2 . 1 1 -A A -1 -1
X.5 11 1 3 -1 2 . -1 -1 . .
X.6 16 1 . . -2 . . . B /B
X.7 16 1 . . -2 . . . /B B
X.8 44 -1 4 . -1 1 . . . .
X.9 45 . -3 1 . . -1 -1 1 1
X.10 55 . -1 -1 1 -1 1 1 . .
A = -E(8)-E(8)^3
= -Sqrt(-2) = -i2
B = E(11)^2+E(11)^6+E(11)^7+E(11)^8+E(11)^10
= (-1-Sqrt(-11))/2 = -1-b11
|