Group action invariants
| Degree $n$ : | $22$ | |
| Transitive number $t$ : | $22$ | |
| Group : | $M_{11}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11,3,19,14)(2,12,4,20,13)(5,17,16,9,7)(6,18,15,10,8), (1,22,15,4,20)(2,21,16,3,19)(5,12,14,9,8)(6,11,13,10,7) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 11: $M_{11}$
Low degree siblings
11T6, 12T272Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 5, 5, 5, 1, 1 $ | $1584$ | $5$ | $( 1,22,13, 4,10)( 2,21,14, 3, 9)( 5, 8,16,19,12)( 6, 7,15,20,11)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1, 1, 1 $ | $440$ | $3$ | $( 3, 8,15)( 4, 7,16)( 5,21,20)( 6,22,19)( 9,13,17)(10,14,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $165$ | $2$ | $( 1,11)( 2,12)( 3,14)( 4,13)( 7,17)( 8,18)( 9,16)(10,15)$ |
| $ 4, 4, 4, 4, 2, 2, 1, 1 $ | $990$ | $4$ | $( 1, 4,11,13)( 2, 3,12,14)( 7, 9,17,16)( 8,10,18,15)(19,20)(21,22)$ |
| $ 8, 8, 4, 2 $ | $990$ | $8$ | $( 1, 7, 4, 9,11,17,13,16)( 2, 8, 3,10,12,18,14,15)( 5, 6)(19,22,20,21)$ |
| $ 8, 8, 4, 2 $ | $990$ | $8$ | $( 1,16,13,17,11, 9, 4, 7)( 2,15,14,18,12,10, 3, 8)( 5, 6)(19,21,20,22)$ |
| $ 11, 11 $ | $720$ | $11$ | $( 1,12,13, 8, 5,19,22,10,17,16, 4)( 2,11,14, 7, 6,20,21, 9,18,15, 3)$ |
| $ 11, 11 $ | $720$ | $11$ | $( 1, 4,16,17,10,22,19, 5, 8,13,12)( 2, 3,15,18, 9,21,20, 6, 7,14,11)$ |
| $ 6, 6, 3, 3, 2, 2 $ | $1320$ | $6$ | $( 1, 8,16,13, 5,12)( 2, 7,15,14, 6,11)( 3, 9)( 4,10)(17,19,22)(18,20,21)$ |
Group invariants
| Order: | $7920=2^{4} \cdot 3^{2} \cdot 5 \cdot 11$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 4 4 3 3 3 . 1 1 . .
3 2 1 . . . . 2 1 . .
5 1 . . . . 1 . . . .
11 1 . . . . . . . 1 1
1a 2a 4a 8a 8b 5a 3a 6a 11a 11b
2P 1a 1a 2a 4a 4a 5a 3a 3a 11b 11a
3P 1a 2a 4a 8a 8b 5a 1a 2a 11a 11b
5P 1a 2a 4a 8b 8a 1a 3a 6a 11a 11b
7P 1a 2a 4a 8b 8a 5a 3a 6a 11b 11a
11P 1a 2a 4a 8a 8b 5a 3a 6a 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1
X.2 10 2 2 . . . 1 -1 -1 -1
X.3 10 -2 . A -A . 1 1 -1 -1
X.4 10 -2 . -A A . 1 1 -1 -1
X.5 11 3 -1 -1 -1 1 2 . . .
X.6 16 . . . . 1 -2 . B /B
X.7 16 . . . . 1 -2 . /B B
X.8 44 4 . . . -1 -1 1 . .
X.9 45 -3 1 -1 -1 . . . 1 1
X.10 55 -1 -1 1 1 . 1 -1 . .
A = -E(8)-E(8)^3
= -Sqrt(-2) = -i2
B = E(11)^2+E(11)^6+E(11)^7+E(11)^8+E(11)^10
= (-1-Sqrt(-11))/2 = -1-b11
|